Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.
Mitochondria are essential for the viability of eukaryotic cells, perform crucial functions in bioenergetics, metabolism and signaling, and have been linked to numerous diseases. Recent functional and proteomic studies revealed a remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, membrane architecture and quality control interact with each other in dynamic networks. Here we discuss that the mitochondrial protein import machinery forms a housekeeping system that plays a central role in organizing the mitochondrial protein networks. The preprotein translocases not only deliver newly synthesized proteins to their proper intramitochondrial destination, but are also directly involved in establishing dynamic networks. Translocases form building blocks that cooperate with numerous mitochondrial protein complexes. Understanding mitochondrial protein organization requires an integrative view of organelle biogenesis and protein network formation.
Mitochondria import nuclear‐encoded precursor proteins to four different subcompartments. Specific import machineries have been identified that direct the precursor proteins to the mitochondrial outer membrane, inner membrane or matrix, respectively. However, a machinery dedicated to the import of mitochondrial intermembrane space (IMS) proteins has not been found so far. We have identified the essential IMS protein Mia40 (encoded by the Saccharomyces cerevisiae open reading frame YKL195w). Mitochondria with a mutant form of Mia40 are selectively inhibited in the import of several small IMS proteins, including the essential proteins Tim9 and Tim10. The import of proteins to the other mitochondrial subcompartments does not depend on functional Mia40. The binding of small Tim proteins to Mia40 is crucial for their transport across the outer membrane and represents an initial step in their assembly into IMS complexes. We conclude that Mia40 is a central component of the protein import and assembly machinery of the mitochondrial IMS.
SummaryMitochondria perform central functions in cellular bioenergetics, metabolism, and signaling, and their dysfunction has been linked to numerous diseases. The available studies cover only part of the mitochondrial proteome, and a separation of core mitochondrial proteins from associated fractions has not been achieved. We developed an integrative experimental approach to define the proteome of east mitochondria. We classified > 3,300 proteins of mitochondria and mitochondria-associated fractions and defined 901 high-confidence mitochondrial proteins, expanding the set of mitochondrial proteins by 82. Our analysis includes protein abundance under fermentable and nonfermentable growth, submitochondrial localization, single-protein experiments, and subcellular classification of mitochondria-associated fractions. We identified mitochondrial interactors of respiratory chain supercomplexes, ATP synthase, AAA proteases, the mitochondrial contact site and cristae organizing system (MICOS), and the coenzyme Q biosynthesis cluster, as well as mitochondrial proteins with dual cellular localization. The integrative proteome provides a high-confidence source for the characterization of physiological and pathophysiological functions of mitochondria and their integration into the cellular environment.
Mitochondria contain translocases for the transport of precursor proteins across their outer and inner membranes. It has been assumed that the translocases also mediate the sorting of proteins to their submitochondrial destination. Here we show that the mitochondrial outer membrane contains a separate sorting and assembly machinery (SAM) that operates after the translocase of the outer membrane (TOM). Mas37 forms a constituent of the SAM complex. The central role of the SAM complex in the sorting and assembly pathway of outer membrane proteins explains the various pleiotropic functions that have been ascribed to Mas37 (refs 4, 11-15). These results suggest that the TOM complex, which can transport all kinds of mitochondrial precursor proteins, is not sufficient for the correct integration of outer membrane proteins with a complicated topology, and instead transfers precursor proteins to the SAM complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.