There are at present two ways to write GUIs for functional code. One is to use standard GUI toolkits, with all the benefits they bring in terms of feature completeness, choice of platform, conformance to platform-specific look-and-feel, long-term viability, etc. However, such GUI APIs mandate an imperative programming style for the GUI and related parts of the application. Alternatively, we can use a functional GUI toolkit. The GUI can then be written in a functional style, but at the cost of foregoing many advantages of standard toolkits that often will be of critical importance. This paper introduces a light-weight framework structured around the notions of reactive values and reactive relations. It allows standard toolkits to be used from functional code written in a functional style. We thus bridge the gap between the two worlds, bringing the advantages of both to the developer. Our framework is available on Hackage and has been been validated through the development of non-trivial applications in a commercial context, and with different standard GUI toolkits.
Several popular generalizations of monads have been implemented in Haskell. Unfortunately, because the shape of the associated type constructors do not match the standard Haskell monad interface, each such implementation provides its own type class and versions of associated library functions. Furthermore, simultaneous use of different monadic notions can be cumbersome as it in general is necessary to be explicit about which notion is used where. In this paper we introduce supermonads : an encoding of monadic notions that captures several different generalizations along with a version of the standard library of monadic functions that work uniformly with all of them. As standard Haskell type inference does not work for supermonads due to their generality, our supermonad implementation is accompanied with a language extension, in the form of a plugin for the Glasgow Haskell Compiler (GHC), that allows type inference for supermonads, obviating the need for manual annotations.
Functional Reactive Programming (FRP) has come to mean many things. Yet, scratch the surface of the multitude of realisations, and there is great commonality between them. This paper investigates this commonality, turning it into a mathematically coherent and practical FRP realisation that allows us to express the functionality of many existing FRP systems and beyond by providing a minimal FRP core parameterised on a monad. We give proofs for our theoretical claims and we have verified the practical side by benchmarking a set of existing, non-trivial Yampa applications running on top of our new system with very good results.
Functional Reactive Programming (FRP) is an approach to reactive programming where systems are structured as networks of functions operating on signals. FRP is based on the synchronous dataflow paradigm and supports both continuous-time and discrete-time signals (hybrid systems). What sets FRP apart from most other languages for similar applications is its support for systems with dynamic structure and for higher-order reactive constructs. Statically guaranteeing correctness properties of programs is an attractive proposition. This is true in particular for typical application domains for reactive programming such as embedded systems. To that end, many existing reactive languages have type systems or other static checks that guarantee domain-specific properties, such as feedback loops always being well-formed. However, they are limited in their capabilities to support dynamism and higher-order data-flow compared with FRP. Thus, the onus of ensuring such properties of FRP programs has so far been on the programmer as established static techniques do not suffice. In this paper, we show how dependent types allow this concern to be addressed. We present an implementation of FRP embedded in the dependently-typed language Agda, leveraging the type system of the host language to craft a domain-specific (dependent) type system for FRP. The implementation constitutes a discrete, operational semantics of FRP, and as it passes the Agda type, coverage, and termination checks, we know the operational semantics is total, which means our type system is safe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.