During a Brazilian multicentric antimicrobial resistance surveillance study, colistin resistance was investigated in 4,620 Enterobacteriaceae isolated from human, animal, food and environmental samples collected from 2000 to 2016. We present evidence that mcr-1-positive Escherichia coli has been emerging in South America since at least 2012, supporting a previous report on the possible acquisition of mcr-1-harbouring E. coli by European travellers visiting Latin American countries.
The detection and rapid spread of colistin-resistant Enterobacteriaceae carrying the mcr-1 gene has created an urgent need to strengthen surveillance. In this study, eight clonally unrelated colistin-resistant Escherichia coli isolates carrying mcr-1 and bla CTX-M or bla CMY-2 genes were isolated from commercial chicken meat in Brazil. Most E. coli strains carried IncX4 plasmids, previously identified in human and animal isolates. These results highlight a new reservoir of mcr-1-harboring E. coli strains in South America.
The emergence and rapid dissemination of colistin-resistant carrying the plasmid-mediated gene have created an urgent need to develop specific screening methods. In this study, we evaluated four assays based on the inhibition of MCR-1 activity by EDTA: (i) a combined-disk test (CDT) comparing the inhibition zones of colistin and colistin (10 μg) plus EDTA (100 mM); (ii) reduction of colistin MIC (CMR) in the presence of EDTA (80 μg/ml); (iii) a modified rapid polymyxin Nordmann/Poirel test (MPNP); and (iv) alteration of zeta potential (R = ZP/ZP). We obtained encouraging results for the detection of MCR-1 in isolates recovered from human, food, and animal samples, using the following assay parameters: ≥3 mm difference in the inhibition zones between colistin disks without and with EDTA; ≥4-fold colistin MIC decrease in the presence of EDTA; R of ≥2.5; and the absence of metabolic activity and proliferation, indicated by unchanged color of phenol red in the presence of colistin-EDTA, in the MPNP test. In this regard, the CDT, CMR, R, and MPNP assays exhibited sensitivities of 96.7, 96.7, 95.1, and 96.7% and specificities of 89.6, 83.3, 100, and 100%, respectively, for detecting MCR-1-positive Our results demonstrate that inhibition by EDTA and zeta potential assays may provide simple and inexpensive methods for the presumptive detection of MCR-1-producing isolates in human and veterinary diagnostic laboratories.
The interactions between three different protein antigens and dioctadecyldimethylammonium bromide (DODAB) dispersed in aqueous solutions from probe sonication or adsorbed as one bilayer onto particles was comparatively investigated. The three model proteins were bovine serum albumin (BSA), purified 18 kDa/14 kDa antigens from Taenia crassiceps (18/14-Tcra) and a recombinant, heat-shock protein hsp-18 kDa from Mycobacterium leprae. Protein-DODAB complexes in water solution were characterized by dynamic light scattering for sizing and zeta-potential analysis. Cationic complexes (80-100 nm of mean hydrodynamic diameter) displayed sizes similar to those of DODAB bilayer fragments (BF) in aqueous solution and good colloid stability over a range of DODAB and protein concentrations. The amount of cationic lipid required for attaining zero of zeta-potential at a given protein amount depended on protein nature being smaller for 18 kDa/14 kDa antigens than for BSA. Mean diameters for DODAB/protein complexes increased, whereas zeta-potentials decreased with NaCl or protein concentration. In mice, weak IgG production but significant cellular immune responses were induced by the complexes in comparison to antigens alone or carried by aluminum hydroxide as shown from IgG in serum determined by ELISA, delayed type hypersensitivity reaction from footpad swelling tests and cytokines analysis. The novel cationic adjuvant/protein complexes revealed good colloid stability and potential for vaccine design at a reduced DODAB concentration.
Multidrug-resistant (MDR) Salmonella enterica has been deemed a high-priority pathogen by the World Health Organization. Two hundred and sixty-four Salmonella enterica isolates recovered over a 16-year period (2000 to 2016) from the poultry and swine production chains, in Brazil, were investigated by whole-genome sequencing (WGS). Most international lineages belonging to 28 serovars, including, S . enterica serovars S . Schwarzengrund ST96, S . Typhimurium ST19, S . Minnesota ST548, S . Infantis ST32, S . Heidelberg ST15, S . Newport ST45, S . Brandenburg ST65 and S . Kentucky ST198 displayed MDR and virulent genetic backgrounds. In this regard, resistome analysis revealed presence of qnrE1 (identified for the first time in S . Typhimurium from food chain), qnrB19, qnrS1 , bla CTX-M-8 , bla CTX-M-2 and bla CMY-2 genes, as well as gyrA mutations; whereas ColpVC, IncHI2A, IncHI2, IncFIA, Incl1, IncA/C2, IncR, IncX1 and po111 plasmids were detected. In addition, phylogenetic analysis revealed multiple independent lineages such as S . enterica serovars S . Infantis, S . Schwarzengrund, S . Minnesota, S . Kentucky and S . Brandenburg. In brief, ocurrence and persistence of international lineages of S . enterica serovars in food production chain is supported by conserved genomes and wide virulome and resistome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.