Streptococcus pyogenes is an important human pathogen worldwide. The identification of natural antibacterial phytochemicals has renewed interest due to the current scarcity of antibiotic development. Carvacrol is a monoterpenoid found in herbs. We evaluated carvacrol alone and combined with selected antibiotics against four strains of S. pyogenes in vitro. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of carvacrol against S. pyogenes were 125 µg/mL (0.53 mM) and 250 µg/mL (1.05 mM), respectively. Kill curve results showed that carvacrol exhibits instantaneous bactericidal activity against S. pyogenes. We also demonstrated the potential mechanism of action of carvacrol through compromising the cell membrane integrity. Carvacrol induced membrane integrity changes leading to leakage of cytoplasmic content such as lactate dehydrogenase enzymes and nucleic acids. We further confirmed dose-dependent rupturing of cells and cell deaths using transmission electron microscopy. The chequerboard assay results showed that carvacrol possesses an additive-synergistic effect with clindamycin or penicillin. Carvacrol alone, combined with clindamycin or penicillin, can be used as a safe and efficacious natural health product for managing streptococcal pharyngitis.
Background: There is a growing interest in medicinal plants which have been traditionally used for the treatment of human infections. This study assessed 14 ethanol extracts (EEs) on bacterial growth and biofilm formation of Streptococcus pyogenes. Methods: Constituent major phytochemicals in the extracts were identified using ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Micro-broth dilution and time-kill assays were used to determine antibacterial activities. Anti-biofilm activities were studied using MTT assay, and morphology of biofilms was observed by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) was employed to visualize the ultra-cross section structure of bacteria treated with efficacious extracts. Results: Licorice root, purple coneflower flower, purple coneflower stem, sage leaves and slippery elm inner bark EEs were the most effective, with minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of 62.5 μg/mL and 125 μg/mL, respectively. The minimum biofilm inhibitory concentration (MBIC) of extracts ranged from 31.5–250 μg/mL. Morphological changes were observed in treated biofilms compared to the untreated. The four most effective extracts exhibited the ability to induce degradation of bacterial cell wall and disintegration of the plasma membrane. Conclusion: We suggest that EEs of sage leaf and purple coneflower flower are promising candidates to be further investigated for developing alternative natural therapies for the management of streptococcal pharyngitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.