Inspired by the contribution of the protein scaffold to the efficiency with which enzymes function, we used outer coordination sphere features to develop a molecular electrocatalyst for the reversible production/oxidation of H2 at 25 °C: [Ni(PCy 2NPhe 2)2]2+ (CyPhe; PR 2NR′ 2 = 1,5-diaza-3,7-diphosphacyclooctane, Cy = cyclohexyl, Phe = phenylalanine). Electrocatalytic reversibility is observed in aqueous, acidic methanol. The aromatic rings in the peripheral phenylalanine groups appear to be essential to achieving reversibility based on the observation that reversibility for arginine (CyArg) or glycine (CyGly) complexes is only achieved with elevated temperature (>50 °C) in 100% water. A complex with a hydroxyl group in the para-position of the aromatic ring, R′ = tyrosine (CyTyr), shows similar reversible behavior. NMR spectroscopy and molecular dynamics studies suggest that interactions between the aromatic groups as well as between the carboxylic acid groups limit conformational flexibility, contributing to reversibility. NMR spectroscopy studies also show extremely fast proton exchange along a pathway from the Ni–H through the pendant amine to the carboxyl group. Further, a complex containing a side chain similar to tyrosine but without the carboxyl group (CyTym; Tym = tyramine) does not display reversible catalysis and has limited proton exchange from the pendant amine, demonstrating an essential role for the carboxylic acid and the proton pathway in achieving catalytic reversibility. This minimal pathway mimics proton pathways found in hydrogenases. The influence of multiple factors on lowering barriers and optimizing relative energies to achieve reversibility for this synthetic catalyst is a clear indication of the intricate interplay between the first, second, and outer coordination spheres that begins to mimic the complexity observed in metalloenzymes.
Polyisobutylene (PIB)-bound ruthenium bipyridine [Ru(PIB-bpy) 3 ] 2+ metal complexes were prepared from PIB ligands formed by alkylation of 4,4′-dimethylbipyridine with polyisobutylene bromide. The product Ru(PIB-bpy) 3 Cl 2 complexes with at least one PIB ligand per bipyridine unit function as soluble recyclable photoredox catalysts in free radical polymerization of acrylate monomers under visible light irradiation at 25 °C with ethyl 2-bromoisobutyrate as the initiator in the presence of diisopropylethylamine. The polyacrylate products contained only about 1 ppm Ru contamination. This PIB-bound catalyst was recyclable and showed about 50-fold less Ru leaching as compared to Ru leaching in a polymerization catalyzed by the low molecular weight Ru catalyst, Ru(bpy) 3 (PF 6 ) 2 .
A series of [Rh(PCH2XRCH2P)2]+ complexes was prepared to investigate second and outer coordination sphere effects on CO2 hydrogenation catalysis, where X is CH2 (dppp) or X–R is N–CH3, N–CH2COOH (glycine), N–CH2COOCH3 (Gly-OMe), or N–CH2C(O)N–CH(CH3)COOCH3 (GlyAla-OMe). All of these complexes were active for CO2 reduction to formate, with the N–CH3 derivative offering an 8-fold enhancement over the dppp derivative, which is consistent with increased electron density around the metal. Despite the increase in rate with the addition of the pendant nitrogen, the addition of electron withdrawing amino acids and dipeptides to the amine resulted in complexes with reductions in rate of 1 to 2 orders of magnitude, most consistent with a change in pK a of the pendant amine, resulting in lower activity. Collectively, the data suggest multiple contributions of the pendant amine in this catalytic system.
The studies described here show that a relatively low molecular weight, narrow polydispersity polyethylene (PE) wax (Polywax) can serve as a nontoxic and nonvolatile alternative to alkane solvents in monophasic catalytic organic reactions where catalysts and products are separated under biphasic conditions. In this application, a polymer that is a solid at room temperature substitutes for a conventional alkane solvent at ca. 80 °C. In addition to the advantages of being a nonvolatile, nontoxic, reusable solvent, this hydrocarbon polymer solvent, like heptane, can sequester nonpolar soluble polymer-bound catalysts after a reaction and separate them from products. The extent of this separation and its generality were studied using polyisobutylene (PIB)- and poly(4-dodecylstyrene)-bound dyes and PE-bound Pd allylic substitution catalysts, PIB-bound Pd cross-coupling catalysts, and PE- and PIB-bound metathesis catalysts. Catalytic reactions were effected using single-phase reaction mixtures containing Polywax with toluene, THF, or THF/DMF at ca. 80 °C. These solutions either separate into two liquid phases on addition of a perturbing agent or separate as a solid/liquid mixture on cooling. The hydrocarbon polymer-bound dyes or catalysts either separate into the hot liquid Polywax phase or coprecipitate with Polywax and are subsequently isolated as a nonvolatile Polywax solid phase that contains the dye or the recyclable catalyst.
Metallophthalocyanines prepared with polyisobutyl (PIB) substituents have very high solubility in organic solvents including saturated hydrocarbons, toluene, and other low polarity organic solvents. In heptane, PIB-bound metallophthalocyanines have solubility of about 0.1 g/mL at 25 C, solubility values that are significantly higher than other substituted metallophthalocyanines. PIB terminally functionalized with metallophthalocyanines as well as PIB containing terminal azo dye groups also dissolve in molten hydrocarbon polymers like polyethylene or polypropylene. Thus, these highly chromogenic PIB-bound dyes can be incorporated uniformly into the polyolefins to form colored polymer solids on cooling. Because only a low concentration of a highly hydrocarbon compatible dye is used, the crystallinity and thermal properties of the colored polyolefin products are not significantly affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.