This study analyzes the flow over a three-dimensional linear low-pressure turbine cascade blade using large eddy simulation at Re = 90,000. The computational model consists of one blade passage with periodic boundaries and synthetic turbulence is generated at the inlet of the domain. Various flow metrics, including isentropic Mach number distribution at mid-span and wake total pressure losses are compared with available experimental data and found to be in good agreement. A more detailed analysis of the turbulence with particular attention to the separation bubble region is subsequently presented. The analysis revealed that the turbulence is in a nearly two-component state very close to the wall region and gradually follows a certain anisotropy trajectory, as the distance from the wall increases. Even in the free-stream region no fully isotropic state is reached, due to large acceleration and flow turning. The results give a new insight into the state of turbulence within the separation region on the blade suction side and emphasize the deficiencies of the Reynolds-averaged Navier Stokes (RANS) turbulence models in reproducing the turbulence anisotropy. This insight is of relevance for the aerodynamic design of turbines, since large parts of the total pressure loss are generated in the separation region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.