Photodynamic therapy (PDT) has been successfully used to treat a variety of cancers. However, one drawback has been the adverse side effects experienced by patients during therapy, as a result of the destruction of normal tissues upon irradiation. Herein, we describe the design, synthesis and characterisation of a photosensitiser to overcome this issue that, in addition to light, is also dependent on the overactive redox system present in cancer cells for its activation. Our probe consists of the photosensitiser, protoporphyrin IX, and a FRET‐based quencher dye, BHQ‐3, on a scaffold containing a disulfide bond. The close proximity of BHQ‐3 to protoporphyrin IX quenches its ability to fluoresce and produce reactive oxygen species, whereas nonenzymatic or enzymatic reduction can recover its native properties. We further demonstrate its ability to be activated in cancer cells in a thiol‐dependent manner and destroy breast and lung cancer cells upon red‐light irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.