Lipid metabolism in avian species places unique demands on the liver in comparison to most mammals. The avian liver synthesizes the vast majority of fatty acids that provide energy and support cell membrane synthesis throughout the bird. Egg production intensifies demands to the liver as hepatic lipids are needed to create the yolk. The enzymatic reactions that underlie de novo lipogenesis are energetically demanding and require a precise balance of vitamins and cofactors to proceed efficiently. External stressors such as overnutrition or nutrient deficiency can disrupt this balance and compromise the liver’s ability to support metabolic needs. Heat stress is an increasingly prevalent environmental factor that impairs lipid metabolism in the avian liver. The effects of heat stress-induced oxidative stress on hepatic lipid metabolism are of particular concern in modern commercial chickens due to the threat to global poultry production. Chickens are highly vulnerable to heat stress because of their limited capacity to dissipate heat, high metabolic activity, high internal body temperature, and narrow zone of thermal tolerance. Modern lines of both broiler (meat-type) and layer (egg-type) chickens are especially sensitive to heat stress because of the high rates of mitochondrial metabolism. While this oxidative metabolism supports growth and egg production, it also yields oxidative stress that can damage mitochondria, cellular membranes and proteins, making the birds more vulnerable to other stressors in the environment. Studies to date indicate that oxidative and heat stress interact to disrupt hepatic lipid metabolism and compromise performance and well-being in both broilers and layers. The purpose of this review is to summarize the impact of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Recent advances that shed light on molecular mechanisms and potential nutritional/managerial strategies to counteract the negative effects of heat stress-induced oxidative stress to the avian liver are also integrated.
Lameness in broiler chickens is a significant animal welfare and financial issue. Bacterial chondronecrosis with osteomyelitis (BCO) leading to lameness can be enhanced by rearing young broilers on wire flooring. Using the wire floor system, we identified Staphylococcus agnetis as the predominant isolate in BCO of the proximal tibiae and femora, and blood of lame broilers. Administration of S. agnetis isolates in water can induce lameness. We now report that the wire floor system increases bacterial translocation into the blood stream. We have also determined that approximately 10 CFU/mL is the minimum effective dose in the drinking water and that challenge at 10, 20, or 30 days of age produces similar incidences of lameness. BCO isolates of S. agnetis are much more effective than other Staphylococcus species and can overwhelm the protective effects of some commercial probiotics. Finally, we also demonstrated that the BCO lameness induced by administration of S. agnetis in the drinking water is transmissible to unchallenged broilers in the same pen.
This study assessed the effects of 3 commercial organic acid (OA) preparations on growth performance, intestinal morphology, cecal microbiology, and immunity of Escherichia coli K88-challenged (ETEC) broiler chickens. One thousand one-day-old male broiler chickens were divided into 8 treatments of 5 replicate pens: Negative control (NC) birds received a basal diet (BD) and were not challenged with ETEC; positive control (PC) birds fed the BD and challenged with ETEC; BD + 0.2% (S1) or 0.4% (S2) of an OA mixture (Salkil) from one to 35 d; BD + 0.1, 0.075, and 0.05% (O1) of another OA mixture (Optimax) in the starter (one to 10 d), grower (11 to 24 d), and finisher (25 to 35 d) diets, respectively, or 0.1% (O2) from one to 35 d; BD + 0.07, 0.05, and 0.05% (P1) or 0.1, 0.07, and 0.05% (P2) of a further OA mixture (pHorce) in the starter, grower, and finisher diets, respectively. All groups (not NC) were challenged with one mL of ETEC (1 × 108 cfu/mL) at 7 d of age. The 3 OA mixtures are commercial formic and propionic acid preparations. Birds challenged with ETEC (PC) had reduced (P < 0.05) growth performance, ileal morphological parameters (not crypt depth, which was increased), cecal lactobacilli, and immune responses, and increased cecal E. coli compared with unchallenged, NC birds. The addition of OA to the diets of ETEC challenged birds (S1-P2) either numerically or significantly (P < 0.05) improved growth performance, ileal morphology and immune responses, increased cecal lactobacilli, and reduced cecal E. coli. For most OA additions, the assessed parameters were generally enhanced to equivalence to NC birds. The results suggest that dietary OA supplementation can enhance the growth performance, ileal morphology, cecal microbiota, and immunity of ETEC-challenged broilers to an extent that, under such circumstances, the formulations used in this study provided similar performance and assessed parameters as non-challenged birds.
Necrotic enteritis (NE) continues to present major challenges to the poultry industry, and the etiologic agent Clostridium perfringens is the fourth leading cause of bacterially-induced food- borne illnesses in the US. This study was designed to evaluate the effects of a probiotic during naturally occurring NE. On day of hatch, 1080 Cobb 500 male broilers were randomly allocated to three groups (12 replicate pens/treatment, 30 birds/pen) including 1) negative control (NC): corn-soybean meal diet; 2) positive control (PC): NC + 20 mg virginiamycin/kg diet (0.450 kg Stafac®20/ton); and 3) NC + PrimaLac (1.36 and 0.91 kg/ton from 1–21 and 22–42 days, respectively). One day (d) post placement, all birds were challenged by a commercial live oocyst coccidia vaccine as a predisposing factor to NE. Body weight and feed intake were measured at the onset of NE (d 8) and end of each feeding phase. On d 8, small intestines of two birds/pen were examined for NE lesions, and jejunum samples from one bird were collected for mRNA gene expression analysis of tight junction proteins, cytokines, and nutrient transporters. Data were analyzed using the Jump (JMP) software and significance between treatments identified by LSD (P < 0.05). Compared to NC, supplementation of probiotic reduced d 1–42 mortality; however, PC was the only group with significantly lower mortality. Despite significantly improved feed conversion ratio (FCR) in PC and probiotic groups during d 1–42, average daily gain was only higher in PC (77.69 g/bird) compared with NC (74.99 g/bird). Furthermore, probiotic and PC groups had significantly reduced lesion scores in the duodenum and jejunum compared to NC. Expression of claudin-3 was higher, while expression of zonula occluden-2 tended (P = 0.06) to be higher in probiotic-supplemented birds compared to NC. Moreover, birds fed the probiotic diet had significantly higher expression of IL-10, IL-17, AMPK-α1, and SGLT1 mRNA compared to NC birds. The expression of PepT1 was higher for the probiotic-supplemented group compared to PC. IFN-γ expression was lower in PC compared to NC, while there was no difference between probiotic and NC. There were no differences in gene expression of sIgA, TNF-α, IL-1β, and IL-22 among treatments. Collectively, these data indicate that in a naturally occurring NE model, supplementation of a probiotic helps to improve FCR and reduce lesions, potentially due to the improvements in mRNA expression of tight junctions, cytokines, and nutrient transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.