Plant traits are both responsive to local climate and strong predictors of primary productivity. We hypothesized that future climate change might promote a shift in global plant traits resulting in changes in Gross Primary Productivity (GPP). We characterized the relationship between key plant traits, namely Specific Leaf Area (SLA), height, and seed mass, and local climate and primary productivity. We found that by 2070, tropical and arid ecosystems will be more suitable for plants with relatively lower canopy height, SLA and seed mass, while far northern latitudes will favor woody and taller plants than at present. Using a network of tower eddy covariance CO2 flux measurements and the extrapolated plant trait maps, we estimated the global distribution of annual GPP under current and projected future plant community distribution. We predict that annual GPP in northern biomes (≥45 °N) will increase by 31% (+8.1 ± 0.5 Pg C), but this will be offset by a 17.9% GPP decline in the tropics (−11.8 ± 0.84 Pg C). These findings suggest that regional climate changes will affect plant trait distributions, which may in turn affect global productivity patterns.
A common assumption of remote sensing-based light use efficiency (LUE) models for estimating vegetation gross primary productivity (GPP) is that plants in a biome matrix operate at their photosynthetic capacity under optimal climatic conditions. A prescribed constant biome maximum light use efficiency parameter (LUE max ) defines the maximum photosynthetic carbon conversion rate under these conditions and is a large source of model uncertainty. Here we used tower eddy covariance measurement-based carbon (CO 2 ) fluxes for spatial estimation of optimal LUE (LUE opt ) across North America. LUE opt was estimated at 62 Flux Network sites using tower daily carbon fluxes and meteorology, and satellite observed fractional photosynthetically active radiation from the Moderate Resolution Imaging Spectroradiometer. A geostatistical model was fitted to 45 flux tower-derived LUE opt data points using independent geospatial environmental variables, including global plant traits, soil moisture, terrain aspect, land cover type, and percent tree cover, and validated at 17 independent tower sites. Estimated LUE opt shows large spatial variability within and among different land cover classes indicated from the sparse tower network. Leaf nitrogen content and soil moisture regime are major factors explaining LUE opt patterns. GPP derived from estimated LUE opt shows significant correlation improvement against tower GPP records (R 2 = 76.9%; mean root-mean-square error (RMSE) = 257 g C m À2 yr À1 ), relative to alternative GPP estimates derived using biome-specific LUE max constants (R 2 = 34.0%; RMSE = 439 g C m À2 yr À1 ). GPP determined from the LUE opt map also explains a 49.4% greater proportion of tower GPP variability at the independent validation sites and shows promise for improving understanding of LUE patterns and environmental controls and enhancing regional GPP monitoring from satellite remote sensing.
Ecosystem productivity models rely on regional climatic information to estimate temperature and moisture constraints influencing plant growth. However, the productivity response to these environmental factors is uncertain at the global scale and has largely been defined using limited observations from sparse monitoring sites, including carbon flux towers. Recent studies have shown that satellite observations of Solar-Induced chlorophyll Fluorescence (SIF) are highly correlated with ecosystem Gross Primary Productivity (GPP). Here, we use a relatively long-term global SIF observational record from the Global Ozone Monitoring Experiment-2 (GOME-2) sensors to investigate the relationships between SIF, used as a proxy for GPP, and selected bio-climatic factors constraining plant growth at the global scale. We compared the satellite SIF retrievals with collocated GPP observations from a global network of tower carbon flux monitoring sites and surface meteorological data from model reanalysis, including soil moisture, Vapor Pressure Deficit (VPD), and minimum daily air temperature (Tmin). We found strong correspondence (R 2 > 80%) between SIF and GPP monthly climatologies for tower sites characterized by mixed, deciduous broadleaf, evergreen needleleaf forests, and croplands. For other land cover types including savanna, shrubland, and evergreen broadleaf forest, SIF showed significant but higher variability in correlations between sites. In order to analyze temperature and moisture related effects on ecosystem productivity, we divided SIF by photosynthetically active radiation (SIF p) and examined partial correlations between SIF p and the climatic factors across a global range of flux tower sites, and over broader regional and global extents. We found that productivity in arid ecosystems is more strongly controlled by soil water content to an extent that soil moisture explains a higher proportion of the seasonal cycle in productivity than VPD. At the global scale, ecosystem productivity is affected by joint climatic constraint factors so that VPD, Tmin, and soil moisture were significant (p < 0.05) controls over 60, 59, and 35 percent of the global domain, respectively. Our study identifies and confirms dominant climate control factors influencing productivity at the global scale indicated from satellite SIF observations. The results are generally consistent with climate response characteristics indicated from sparse global tower observations, while providing more extensive coverage for verifying and refining global carbon and climate model assumptions and predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.