Abstract. On 3 September 2017 official channels of the Democratic People's Republic of Korea announced the successful test of a thermonuclear device. Only seconds to minutes after the alleged nuclear explosion at the Punggye-ri nuclear test site in the mountainous region in the country's northeast at 03:30:02 (UTC), hundreds of seismic stations distributed all around the globe picked up strong and distinct signals associated with an explosion. Different seismological agencies reported body wave magnitudes of well above 6.0, consequently estimating the explosive yield of the device on the order of hundreds of kT TNT equivalent. The 2017 event can therefore be assessed as being multiple times larger in energy than the two preceding North Korean events in January and September 2016. This study provides a multi-technology analysis of the 2017 North Korean event and its aftermath using a wide array of geophysical methods. Seismological investigations locate the event within the test site at a depth of approximately 0.6 km below the surface. The radiation and generation of P- and S-wave energy in the source region are significantly influenced by the topography of the Mt. Mantap massif. Inversions for the full moment tensor of the main event reveal a dominant isotropic component accompanied by significant amounts of double couple and compensated linear vector dipole terms, confirming the explosive character of the event. The analysis of the source mechanism of an aftershock that occurred around 8 min after the test in the direct vicinity suggest a cavity collapse. Measurements at seismic stations of the International Monitoring System result in a body wave magnitude of 6.2, which translates to an yield estimate of around 400 kT TNT equivalent. The explosive yield is possibly overestimated, since topography and depth phases both tend to enhance the peak amplitudes of teleseismic P waves. Interferometric synthetic aperture radar analysis using data from the ALOS-2 satellite reveal strong surface deformations in the epicenter region. Additional multispectral optical data from the Pleiades satellite show clear landslide activity at the test site. The strong surface deformations generated large acoustic pressure peaks, which were observed as infrasound signals with distinctive waveforms even at distances of 401 km. In the aftermath of the 2017 event, atmospheric traces of the fission product 133Xe were detected at various locations in the wider region. While for 133Xe measurements in September 2017, the Punggye-ri test site is disfavored as a source by means of atmospheric transport modeling, detections in October 2017 at the International Monitoring System station RN58 in Russia indicate a potential delayed leakage of 133Xe at the test site from the 2017 North Korean nuclear test.
<p>Pyrocko is an open source seismology toolbox and library, written in the Python programming language. It can be utilized flexibly for a variety of geophysical tasks, like seismological data processing and analysis, modelling of waveforms, InSAR or GPS displacement data, or for seismic source characterization. At its core, Pyrocko is a &#160;library &#160;and &#160;framework &#160;providing &#160;building &#160;blocks &#160;for researchers &#160;and &#160;students &#160;wishing &#160;to &#160;develop &#160;their &#160;own applications. Pyrocko contains a few standalone applications for everyday seismological practice. These include the Snuffler program, an extensible seismogram browser and workbench, the Cake tool, providing travel-time and ray-path computations for 1D layered earthmodels, Fomosto, a tool to manage pre-calculated Green&#8217;s function stores, Jackseis, a command-line tool for common waveform archive data manipulations, Colosseo, a tool to create synthetic earthquake scenarios, serving waveforms and static displacements, and new, Sparrow, a 3D geophysical data visualization tool. This poster gives a glimpse of Pyrocko&#8217;s features, for more examples and tutorials visit https://pyrocko.org/.</p>
Induced seismicity is one of the main factors that reduces societal acceptance of deep geothermal energy exploitation activities, and felt earthquakes are the main reason for closure of geothermal projects. Implementing innovative tools for real-time monitoring and forecasting of induced seismicity was one of the aims of the recently completed COSEISMIQ project. Within this project, a temporary seismic network was deployed in the Hengill geothermal region in Iceland, the location of the nation’s two largest geothermal power plants. In this paper, we release raw continuous seismic waveforms and seismicity catalogues collected and prepared during this project. This dataset is particularly valuable since a very dense network was deployed in a seismically active region where thousand of earthquakes occur every year. For this reason, the collected dataset can be used across a broad range of research topics in seismology ranging from the development and testing of new data analysis methods to induced seismicity and seismotectonics studies.
S U M M A R YGlobal earthquake locations are often associated with very large systematic travel-time residuals even for clear arrivals, especially for regional and near-regional stations in subduction zones because of their strongly heterogeneous velocity structure. Travel-time corrections can drastically reduce travel-time residuals at regional stations and, in consequence, improve the relative location accuracy. We have extended the shrinking-box source-specific station terms technique to regional and teleseismic distances and adopted the algorithm for probabilistic, nonlinear, global-search location. We evaluated the potential of the method to compute precise relative hypocentre locations on a global scale. The method has been applied to two specific test regions using existing P-and pP-phase picks. The first data set consists of 3103 events along the Chilean margin and the second one comprises 1680 earthquakes in the Tonga-Fiji subduction zone. Pick data were obtained from the GEOFON earthquake bulletin, produced using data from all available, global station networks. A set of timing corrections varying as a function of source position was calculated for each seismic station. In this way, we could correct the systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure without explicitly solving for a velocity model. Residual statistics show that the median absolute deviation of the travel-time residuals is reduced by 40-60 per cent at regional distances, where the velocity anomalies are strong. Moreover, the spread of the travel-time residuals decreased by ∼20 per cent at teleseismic distances (>28 • ). Furthermore, strong variations in initial residuals as a function of recording distance are smoothed out in the final residuals. The relocated catalogues exhibit less scattered locations in depth and sharper images of the seismicity associated with the subducting slabs. Comparison with a high-resolution local catalogue reveals that our relocation process significantly improves the hypocentre locations compared to standard locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.