Physicians make critical time-constrained decisions every day. Clinical predictive models can help physicians and administrators make decisions by forecasting clinical and operational events. Existing structured data-based clinical predictive models have limited use in everyday practice owing to complexity in data processing, as well as model development and deployment1–3. Here we show that unstructured clinical notes from the electronic health record can enable the training of clinical language models, which can be used as all-purpose clinical predictive engines with low-resistance development and deployment. Our approach leverages recent advances in natural language processing4,5 to train a large language model for medical language (NYUTron) and subsequently fine-tune it across a wide range of clinical and operational predictive tasks. We evaluated our approach within our health system for five such tasks: 30-day all-cause readmission prediction, in-hospital mortality prediction, comorbidity index prediction, length of stay prediction, and insurance denial prediction. We show that NYUTron has an area under the curve (AUC) of 78.7–94.9%, with an improvement of 5.36–14.7% in the AUC compared with traditional models. We additionally demonstrate the benefits of pretraining with clinical text, the potential for increasing generalizability to different sites through fine-tuning and the full deployment of our system in a prospective, single-arm trial. These results show the potential for using clinical language models in medicine to read alongside physicians and provide guidance at the point of care.
There is an increasing interest in developing massive-size deep learning models in natural language processing (NLP) - the key technology to extract patient information from unstructured electronic health records (EHRs). However, there are limited studies exploring large language models in the clinical domain; the current largest clinical NLP model was trained with 110 million parameters (compared with 175 billion parameters in the general domain). It is not clear how large-size NLP models can help machines understand patients' clinical information from unstructured EHRs. In this study, we developed a large clinical transformer model - GatorTron - using >90 billion words of text and evaluated it on 5 clinical NLP tasks including clinical concept extraction, relation extraction, semantic textual similarity, natural language inference, and medical question answering. GatorTron is now the largest transformer model in the clinical domain that scaled up from the previous 110 million to 8.9 billion parameters and achieved state-of-the-art performance on the 5 clinical NLP tasks targeting various healthcare information documented in EHRs. GatorTron models perform better in understanding and utilizing patient information from clinical narratives in ways that can be applied to improvements in healthcare delivery and patient outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.