Motivation Active module identification (AMI) is an essential step in many omics analyses. Such algorithms receive a gene network and a gene activity profile as input and report subnetworks that show significant over-representation of accrued activity signal (“active modules”). Such modules can point out key molecular processes in the analyzed biological conditions. Results We recently introduced a novel AMI algorithm called DOMINO, and demonstrated that it detects active modules that capture biological signals with markedly improved rate of empirical validation. Here, we provide an online server that executes DOMINO, making it more accessible and user-friendly. To help the interpretation of solutions, the server provides GO enrichment analysis, module visualizations, and accessible output formats for customized downstream analysis. It also enables running DOMINO with various gene identifiers of different organisms. Availability The server is available at http://domino.cs.tau.ac.il. Its codebase is available at https://github.com/Shamir-Lab.
Active module identification (AMI) is an essential step in many omics analyses. Such algorithms receive a gene network and a gene activity profile as input and report subnetworks that show significant over-representation of accrued activity signal (“active modules”). Such modules can point out key molecular processes in the analyzed biological conditions.ResultsWe recently introduced a novel AMI algorithm called DOMINO, and demonstrated that it detects active modules that capture biological signals with markedly improved rate of empirical validation. Here, we provide an online server that executes DOMINO, making it more accessible and user-friendly. To help the interpretation of solutions, the server provides GO enrichment analysis, module visualizations, and accessible output formats for customized downstream analysis. It also enables running DOMINO with various gene identifiers of different organisms.Availability and implementationThe server is available at http://domino.cs.tau.ac.il. Its codebase is available at https://github.com/Shamir-Lab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.