We develop here a new and effective strategy for compatibilizing immiscible polymer blend nanocomposites of polyethylene/high impact polystyrene/graphite oxide (PE/HIPS/GO) by combination of solution intercalation and melt mixing method.
In this research, a new generation of ternary nanocomposites based on poly(ethylene terephthalate) (PET), phosphorylated chitosan and surface modified alumina nanoparticles were fabricated in four steps. The phosphorylation process was targeted for the insertion of phosphorus moieties as a flame retardant agent in the final PET nanocomposite. Likewise, environmentally friendly nano-alumina was used for PET matrix to improve the thermal properties of PET in collaboration with organic anchored phosphorus moieties. Alternatively, the presence of bio-safe modified alumina nanoparticles in combination with phosphorylated chitosan simultaneously improved the antibacterial activity and thermal properties of the PET matrix. Furthermore, the effects of the phosphorylated chitosan and alumina nanoparticles on the morphology and thermal properties of nanocomposites were inspected by different approaches. The structure and distribution of the nanoscale particles in PET were analyzed by scanning electron microscopy. In addition, differential scanning calorimetry and thermogravimetric analyses were used for the in-depth evaluation of the thermal properties of prepared nanocomposites. Prepared nanocomposites showed better growth inhibition activities against Escherichia coli bacteria compared to the PET and PET/phosphorylated chitosan samples. Also, the thermal characteristics of prepared nanocomposites were considerably improved.
In this research, a new generation of ternary nanocomposites based on poly(ethylene terephthalate) (PET), phosphorylated chitosan and surface modified alumina nanoparticles were fabricated in four steps. The phosphorylation process was targeted for the insertion of elemental phosphorus as a flame retardant agent in the final PET nanocomposite. Likewise, environmentally friendly nano-alumina was used for PET matrix to improve the flame retardant properties of PET in collaboration with elemental phosphorus. Alternatively, the presence of alumina nanoparticles in combination with phosphorylated chitosan improved the antibacterial activity of the PET matrix. Furthermore, the effects of the phosphorylated chitosan and alumina nanoparticles on the morphology and thermal properties of nanocomposites were inspected by different approaches. The structure and distribution of the nanoscale particles in PET were analyzed by scanning electron microscopy. In addition, differential scanning calorimetry and thermogravimetric analyses were used for the in-depth evaluation of the thermal properties of prepared nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.