The microstructure evolution of a martensitic Stainless steel subjected to hot compression is simulated with a physically based model. The model is based on coupled sets of evolution equations for dislocations, vacancies, recrystallization, and grain growth. The advantage of this model is that with only a few experiments, the material-dependent parameters of the model can be calibrated and used for a new alloy in any deformation condition. The experimental data of this work are obtained from a series of hot compression, and subsequent stress relaxation tests performed in a Gleeble thermo-mechanical simulator. These tests are carried out at various temperatures ranging from 900 to 1200°C, strains up to 0.7, and strain rates of 0.01, 1, and 10 s À1. The grain growth, flow stress, and stress relaxations are simulated by finding reasonable values for model parameters. The flow stress data obtained at the strain rate of 10 s À1 were used to calibrate the model parameters and the predictions of the model for the lower strain rates were quite satisfactory. An assumption in the model is that the structure of second phase particles does not change during the short time of deformation. The results show a satisfactory agreement between the experimental data and simulated flow stress, as well as less than 5 pct difference for grain growth simulations and predicting the dominant softening mechanisms during stress relaxation according to the strain rates and temperatures under deformation.
The mean size and fraction of the second-phase particles in a 13% chromium steel are investigated, while no plastic deformation was applied. The results of the measurement are compared with the modelling results from a physicallybased model. The heating sequence is performed on samples using a Gleeble thermo-mechanical simulator over the temperature range of 850-1200°C. Using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the size distribution and composition of the carbides were evaluated, respectively. For obtaining particle size distribution (PSD), an image-processing software was employed to analyse the SEM images. Additionally, the relation between the 2D shape factor and size of the particles is also studied at different temperatures and most of the particles turned out to have a shape factor close to two. In order to measure the carbide weight fraction, electrochemical phase isolation was employed. The Ms and fraction of the martensite phase after quenching of samples are calculated and the results were comparable with the measured hardness values at corresponding temperatures. The measured hardness of the samples is found to comply very well with the measured mean size of the precipitates. The calculated mean size of the particles from the model shows very good agreement with both hardness value and experimentally measured mean size, while the calculated volume fraction from simulation follows a slightly different trend. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.