SUMMARYPresented here is a numerical investigation of the influence of non-uniform soil conditions on a prototype concrete bridge with three bents (four span) where soil beneath bridge bents are varied between stiff sands and soft clay. A series of high-fidelity models of the soil-foundation-structure system were developed and described in some details. Development of a series of high-fidelity models was required to properly simulate seismic wave propagation (frequency up to 10 Hz) through highly nonlinear, elastic plastic soil, piles and bridge structure. Eight specific cases representing combinations of different soil conditions beneath each of the bents are simulated. It is shown that variability of soil beneath bridge bents has significant influence on bridge system (soil-foundation-structure) seismic behavior. Results also indicate that free field motions differ quite a bit from what is observed (simulated) under at the base of the bridge columns indicating that use of free field motions as input for only structural models might not be appropriate. In addition to that, it is also shown that usually assumed beneficial effect of stiff soils underneath a structure (bridge) cannot be generalized and that such stiff soils do not necessarily help seismic performance of structures. Moreover, it is shown that dynamic characteristics of all three components of a triad made up of earthquake, soil and structure play crucial role in determining the seismic performance of the infrastructure (bridge) system.
Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al., 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al., 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.