Colorectal cancer (CRC) is one of the most prevalent cancers globally. Despite recent progress in identifying etiologies and molecular genetics as well as new therapeutic approaches, the clinical outcome of current CRC therapies remains poor. This fact highlights the importance of further understanding of underlying mechanisms involved in colorectal tumor initiation and progression. Abnormal metabolic alterations offer an evolutional advantage for CRC tumor cells and enhance their aggressive phenotype. Therefore, dysregulation of cellular metabolism is intricately associated with colorectal tumorigenesis. This review summarizes recent findings regarding the CRC-related changes in cellular metabolic pathways such as glycolysis, tricarboxylic acid cycle, fatty acid oxidation, and mitochondrial metabolism. We describe the oncogenic signaling pathways associated with metabolic dysregulation during malignant transformation and tumor progression. Given the crucial role of metabolic pathway alterations in pathogenesis of CRC, we provide an overview of novel pharmacological strategies for the treatment of CRC by targeting metabolic and signaling pathways.
Background:
Chemotherapy-induced peripheral neuropathy (CIPN) is a painful condition, experienced by patients undergoing chemotherapy with some specific drugs, such as platinum-based agents, taxanes, and vinca alkaloids. Painful CIPN may lead to dose interruptions and discontinuation of chemotherapy and can negatively impact on the quality of life and clinical outcome of these patients. Due to a lack of a practical medical therapy for CIPN, it is necessary to further explore and identify novel therapeutic options.
Methods:
We have reviewed PubMed and EMBASE libraries to gather data on the mechanism-based pharmacological management of chemotherapy-induced neuropathic pain.
Result:
This review has focused on the potential mechanisms by which these chemotherapeutic agents may be involved in the development of CIPN, and explains how this may be translated into clinical management. Additionally, we have presented an overview of emerging candidates for the prevention and treatment of CIPN in preclinical and clinical studies.
Conclusion:
Taken together, due to the debilitating consequences of CIPN for the quality of life and clinical outcome of cancer survivors, future studies should focus on identifying underlying mechanisms contributing to CIPN as well as developing effective pharmacological interventions based on these mechanistic insights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.