We have presented a theoretical study of the dust acoustic (DA) shock structures in a magnetized, electron depleted dusty plasma in the presence of two temperature superthermal ions. By deriving a Korteweg-de Vries-Burgers equation and studying its shock solution, we aim to highlight the effects of magnetic field and obliqueness on various properties of the DA shock structures in the presence of kappa-distributed two temperature ion population. The present model is motivated by the observations of Geotail spacecraft in the Earthʼs magnetotail and it is seen that the different physical parameters such as superthermality of the cold and hot ions, the cold to hot ion temperature ratio, the magnetic field strength, obliqueness and the dust kinematic viscosity greatly influence the dynamics of the shock structures so formed. The results suggest that the variation of superthermalities of the cold and hot ions have contrasting effects on both positive and negative polarity shock structures. Moreover, it is noted that the presence of the ambient magnetic field affects the dispersive properties of the medium and tends to make the shock structures less wide and more abrupt. The findings of present investigation may be useful in understanding the dynamics of shock waves in dusty plasma environments containing two temperature ions where the electrons are significantly depleted.
An investigation of nonlinear ion acoustic (IA) cnoidal waves in a magnetised quantum plasma is presented by using spin evolution quantum hydrodynamics model, in which inertial classical ions and degenerate inertialess electrons with both spin-up and spin-down states taken as separate species are considered. The Korteweg-de Vries equation is derived using the reductive perturbation method. Further, using the Sagdeev pseudopotential approach, the solution for IA cnoidal waves is derived with suitable boundary conditions. There is the formation of only positive potential cnoidal, and in the limiting case, positive solitary waves are observed. The effects of density polarisation and other plasma parameters on the characteristic features of cnoidal and solitary waves have been analysed numerically. It is seen that the spin density polarisation significantly affects the characteristics of cnoidal structures as we move from strongly spin-polarised (µ = 1) to a zero spin-polarisation case (µ = 0). The results obtained in the present investigation may be useful in comprehending various nonlinear excitations in dense astrophysical regions, such as white dwarfs, neutron stars, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.