A built-up environment utilizes building materials containing natural radionuclides that will change radiological risks. While radiological risks have been estimated from the activity concentrations of natural radionuclides in soil, it is important to evaluate the changes of these risks for the built-up environment using these building materials. Based on the direct measurements of absorbed dose rate in air and calculation of absorbed dose rate in air from activity concentrations in soil for all of Vietnam which has undergone significant economic growth in recent decades, the changes of absorbed dose rate in air and radiological risks before and after construction of many artificial structures were investigated. the results showed that the absorbed dose rates in air were clearly changed by the urbanization, and the difference ratio for all of Vietnam ranged from 0.5 to 2.1, meaning that the artificial structures have been acting as shielding materials to terrestrial gamma-rays or radiation sources. However, changes in annual effective dose in the built-up environment were small, and there was no new radiation risk from the built-up environment for Vietnam.
A new chemical separation has been developed to isolate uranium (U) using two UTEVA columns to minimize iron and thorium interferences from high background area soil samples containing minerals like monazites and ilmenite. The separation method was successfully verified in some certified reference materials (CRMs), for example, JSd-2, JLk-1, JB-1 and JB-3. The same method was applied for purification of U in Fukushima soil samples affected by the Fukushima dai-ichi nuclear power station (FDNPS) accident. Precise and accurate measurement of 234U/238U and 235U/238U isotope ratios in chemically separated U were carried out using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). In this mass spectrometric method, an array of two Faraday cups (1011 Ω, 1012 Ω resistor) and a Daly detector were simultaneously employed. The precision of U isotope ratios in an in-house standard was evaluated by replicate measurement. Relative standard deviation (RSD) of 234U/238U and 235U/238U were found to be 0.094% (2σ) and 0.590% (2σ), respectively. This method has been validated using a standard reference material SRM 4350B, sediment sample. The replicate measurements of 234U/238U in SRM shows 0.7% (RSD). This developed method is suitable for separation of U and its isotope ratio measurement in environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.