Salinity and high temperature are major abiotic stresses limiting sustainable crop production. Seed priming is a useful tool to enhance seedling growth and the antioxidant defence system of crops under salinity and temperature stress. This experiment was designed to determine the effects of gibberellic acid (GA3, 288.7 µm), kinetin (232.2 µm) and salicylic acid (362 µm) on some morphological and physiological parameters of sweet sorghum (Sorghum bicolor L. Moench) hybrid Yajin 13 under salinity (0, 100 and 200 mm NaCl) and temperature (25°C and 37°C) stress. Salinity and high temperature significantly reduced emergence percentage, shoot and root lengths, number of leaves, shoot fresh and dry weight, and chlorophyll a and b content. The activity of superoxide dismutase (SOD) and malondialdehyde (MDA) content were increased with an increase in both salinity and temperature stress. Hormone treatments positively affected all parameters except root fresh and dry weight, number of leaves, SOD activity and chlorophyll a. Under salinity stress at 200 mm NaCl, treatment with salicylic acid increased emergence percentage, emergence rate, chlorophyll b and protein content by 82.0%, 130%, 7.9% and 1.9%, respectively, relative to the control (no treatment). At 37°C, salicylic acid increased emergence percentage, emergence rate and number of roots by 72.5%, 108.5% and 63.8%, respectively, and decreased MDA content by 17.6% relative to the control. Our study indicated that seed priming with an appropriate concentration of exogenous hormones (salicylic acid, kinetin, GA3) is a useful, easy method for improving germination, seedling growth and the antioxidant defence system of sweet sorghum under conditions of high temperature and salinity.
The seeds of six wheat (Triticum aestivum L.) varieties from China (Xumai 30, Yang 10‐13, and Yang 11‐10) and Sudan (Argine, Buahin, and Elnilein) were cultured in NaCl solution containing (0, 50, 100, 150, 200, and 250 mM NaCl). Germination and early growth were determined. There were significant differences among salinity levels for water uptake, germination percentage, shoot and root length, dry weight, and salt tolerance index. At all salinity levels, the six varieties showed similar salt resistance, but each variety had different degrees of salt resistance. Argine had the highest germination percentage and germination index, and Yang 11‐10 had the highest reduction of total dry weight. Elnilein had a better salt tolerance index than the other varieties. Elnilein is recommended for saline soils. We suggest that a simple germination test would be a useful selection tool to use in developing new wheat lines for production on saline soils.
Salinity limits germination and plant growth and development in 45 million ha worldwide. Techniques to overcome this problem are needed. This project investigated the effects of jasmonic acid (JA) (0, 5, and 10 mM JA) and humic acid (HA) (0, 3, and 6 g HA kg −1 soil) on growth and physiological parameters of forage sorghum (Sorghum bicolor L. Moench) under different NaCl salinity levels (0, 100, and 200 mM NaCl, with an equivalent electrical conductivity (EC) of 0.12 dSm −1 as control treatment, 3.22, and 5.78 dSm −1 , respectively). NaCl salinity reduced emergence percentage, emergence rate, salt tolerance index and seedling vigor index, all seedling growth parameters, ascorbate peroxidase (APX) activity, chlorophyll a, b and total chlorophyll content. Proline content and soluble protein content were increased with salinity. At the 200 mM salinity level, seeds treated with 10 mM JA had a positive effect on emergence percentage, emergence rate, shoot length, total fresh weight, salt tolerance index, seedling vigor index, chlorophyll a and total chlorophyll content. At 200 mM NaCl salinity level, seeds treated with 6 g HA kg −1 soil had increased root length, total dry weight, salt tolerance index, seedling vigor index, shoot length, protein content, APX, chlorophyll b, and total chlorophyll in seedlings. The application of 5 mM JA combined with 6 g HA kg −1 soil was most effective in minimizing salinity stress. Our study suggested that the appropriate combined application of HA and JA could efficiently protect early seedlings from salt stress damage and alleviate abiotic stress.Abbreviations: APX, ascorbate peroxidase; HA, humic acid; JA, jasmonic acid; ROS, reactive oxygen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.