The security of logic locking has been called into question by various attacks, especially a Boolean satisfiability (SAT) based attack, that exploits scan access in a working chip. Among other techniques, a robust design-for-security (DFS) architecture was presented to restrict any unauthorized scan access, thereby, thwarting the SAT attack (or any other attack that relies on scan access). Nevertheless, in this work, we successfully break this technique by recovering the secret key despite the lack of scan access. Our security analysis on a few benchmark circuits protected by the robust DFS architecture demonstrates the effectiveness of our attack; on average ∼95% of the key bits are correctly recovered, and almost 100% in most cases. To overcome this and other prevailing attacks, we propose a defense by making fundamental changes to the robust DFS technique; the new defense can withstand all logic locking attacks. We observe, on average, lower area overhead (∼1.65%) than the robust DFS design (∼5.15%), and similar test coverage (∼99.88%).
While financially advantageous, outsourcing key steps, such as testing, to potentially untrusted Outsourced Assembly and Test (OSAT) companies may pose a risk of compromising on-chip assets. Obfuscation of scan chains is a technique that hides the actual scan data from the untrusted testers; logic inserted between the scan cells, driven by a secret key, hides the transformation functions that map the scan-in stimulus (scan-out response) and the delivered scan pattern (captured response). While static scan obfuscation utilizes the same secret key, and thus, the same secret transformation functions throughout the lifetime of the chip, dynamic scan obfuscation updates the key periodically. In this paper, we propose ScanSAT: an attack that transforms a scan obfuscated circuit to its logic-locked version and applies the Boolean satisfiability (SAT) based attack, thereby extracting the secret key. We implement our attack, apply on representative scan obfuscation techniques, and show that ScanSAT can break both static and dynamic scan obfuscation schemes with 100% success rate. Moreover, ScanSAT is effective even for large key sizes and in the presence of scan compression.
Outsourcing in semiconductor industry opened up venues for faster and cost-effective chip manufacturing. However, this also introduced untrusted entities with malicious intent, to steal intellectual property (IP), overproduce the circuits, insert hardware Trojans, or counterfeit the chips. Recently, a defense is proposed to obfuscate the scan access based on a dynamic key that is initially generated from a secret key but changes in every clock cycle. This defense can be considered as the most rigorous defense among all the scan locking techniques. In this paper, we propose an attack that remodels this defense into one that can be broken by the SAT attack, while we also note that our attack can be adjusted to break other less rigorous (key that is updated less frequently) scan locking techniques as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.