Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis in susceptible humans. Here, we infected Diversity Outbred (DO) mice with ∼100 bacilli by aerosol to model responses in a highly heterogeneous population. Following infection, ‘supersusceptible’, ‘susceptible’ and ‘resistant’ phenotypes emerged. TB disease (reduced survival, weight loss, high bacterial load) correlated strongly with neutrophils, neutrophil chemokines, tumor necrosis factor (TNF) and cell death. By contrast, immune cytokines were weak correlates of disease. We next applied statistical and machine learning approaches to our dataset of cytokines and chemokines from lungs and blood. Six molecules from the lung: TNF, CXCL1, CXCL2, CXCL5, interferon-γ (IFN-γ), interleukin 12 (IL-12); and two molecules from blood – IL-2 and TNF – were identified as being important by applying both statistical and machine learning methods. Using molecular features to generate tree classifiers, CXCL1, CXCL2 and CXCL5 distinguished four classes (supersusceptible, susceptible, resistant and non-infected) from each other with approximately 77% accuracy using completely independent experimental data. By contrast, models based on other molecules were less accurate. Low to no IFN-γ, IL-12, IL-2 and IL-10 successfully discriminated non-infected mice from infected mice but failed to discriminate disease status amongst supersusceptible, susceptible and resistant M.-tuberculosis-infected DO mice. Additional analyses identified CXCL1 as a promising peripheral biomarker of disease and of CXCL1 production in the lungs. From these results, we conclude that: (1) DO mice respond variably to M. tuberculosis infection and will be useful to identify pathways involving necrosis and neutrophils; (2) data from DO mice is suited for machine learning methods to build, validate and test models with independent data based solely on molecular biomarkers; (3) low levels of immunological cytokines best indicate a lack of exposure to M. tuberculosis but cannot distinguish infection from disease.
Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix) adhesion, and cellular contraction in cleft formation; however, the relative contribution of each of these processes is not fully understood since it is not possible to experimentally manipulate each factor independently. We present here a comprehensive analysis of several cellular parameters regulating cleft progression during branching morphogenesis in the epithelial tissue of an early embryonic salivary gland at a local scale using an on lattice Monte-Carlo simulation model, the Glazier-Graner-Hogeweg model. We utilized measurements from time-lapse images of mouse submandibular gland organ explants to construct a temporally and spatially relevant cell-based 2D model. Our model simulates the effect of cellular proliferation, actomyosin contractility, cell-cell and cell-matrix adhesions on cleft progression, and it was used to test specific hypotheses regarding the function of these parameters in branching morphogenesis. We use innovative features capturing several aspects of cleft morphology and quantitatively analyze clefts formed during functional modification of the cellular parameters. Our simulations predict that a low epithelial mitosis rate and moderate level of actomyosin contractility in the cleft cells promote cleft progression. Raising or lowering levels of contractility and mitosis rate resulted in non-progressive clefts. We also show that lowered cell-cell adhesion in the cleft region and increased cleft cell-matrix adhesions are required for cleft progression. Using a classifier-based analysis, the relative importance of these four contributing cellular factors for effective cleft progression was determined as follows: cleft cell contractility, cleft region cell-cell adhesion strength, epithelial cell mitosis rate, and cell-matrix adhesion strength.
We present in this study a novel approach to predicting EEG epileptic seizures: we accurately model and predict non-ictal cortical activity and use prediction errors as parameters that significantly distinguish ictal from non-ictal activity. We suppress seizure-related activity by modeling EEG signal acquisition as a cocktail party problem and obtaining seizure-related activity using Independent Component Analysis. Following recent studies intricately linking seizure to increased, widespread synchrony, we construct dynamic EEG synchronization graphs in which the electrodes are represented as nodes and the pair-wise correspondences between them are represented by edges. We extract 38 intuitive features from the synchronization graph as well as the original signal. From this, we use a rigorous method of feature selection to determine minimally redundant features that can describe the non-ictal EEG signal maximally. We learn a one-step forecast operator restricted to just these features, using autoregression (AR(1)). We improve this in a novel way by cross-learning common knowledge across patients and recordings using Transfer Learning, and devise a novel transformation to increase the efficiency of transfer learning. We declare imminent seizure based on detecting outliers in our prediction errors using a simple and intuitive method. Our median seizure detection time is 11.04 minutes prior to the labeled start of the seizure compared to a benchmark of 1.25 minutes prior, based on previous work on the topic. To the authors' best knowledge this is the first attempt to model seizure prediction in this manner, employing efficient seizure suppression, the use of synchronization graphs and transfer learning, among other novel applications.
This study considers the problem of describing and predicting cleft formation during the early stages of branching morphogenesis in mouse submandibular salivary glands (SMG) under the influence of varied concentrations of epidermal growth factors (EGF). Given a time-lapse video of a growing SMG, first we build a descriptive model that captures the underlying biological process and quantifies the ground truth. Tissue-scale (global) and morphological features related to regions of interest (local features) are used to characterize the biological ground truth. Second, we devise a predictive growth model that simulates EGF-modulated branching morphogenesis using a dynamic graph algorithm, which is driven by biological parameters such as EGF concentration, mitosis rate, and cleft progression rate. Given the initial configuration of the SMG, the evolution of the dynamic graph predicts the cleft formation, while maintaining the local structural characteristics of the SMG. We determined that higher EGF concentrations cause the formation of higher number of buds and comparatively shallow cleft depths. Third, we compared the prediction accuracy of our model to the Glazier-Graner-Hogeweg (GGH) model, an on-lattice Monte-Carlo simulation model, under a specific energy function parameter set that allows new rounds of de novo cleft formation. The results demonstrate that the dynamic graph model yields comparable simulations of gland growth to that of the GGH model with a significantly lower computational complexity. Fourth, we enhanced this model to predict the SMG morphology for an EGF concentration without the assistance of a ground truth time-lapse biological video data; this is a substantial benefit of our model over other similar models that are guided and terminated by information regarding the final SMG morphology. Hence, our model is suitable for testing the impact of different biological parameters involved with the process of branching morphogenesis in silico, while reducing the requirement of in vivo experiments.
This work presents a novel modeling of neuronal activity of the brain by capturing the synchronization of EEG signals along the scalp. The pair-wise correspondence between electrodes recording EEG signals are used to establish edges between these electrodes which then become the nodes of a synchronization graph. As EEG signals are recorded over time, we discretize the time axis into overlapping epochs, and build a series of time-evolving synchronization graphs for each epoch and for each traditional frequency band.We show that graph theory provides a rich set of graph features that can be used for mining and learning from the EEG signals to determine temporal and spatial localization of epileptic seizures. We present several techniques to capture the pair-wise synchronization and apply unsupervised learning algorithms, such as k-means clustering and multiway modeling of third-order tensors, to analyze the labeled clinical data in the feature domain to detect the onset and origin location of the seizure. We use k-means clustering on two-way feature matrices for detection of seizures, and Tucker3 tensor decomposition for localization of seizures. We conduct an extensive parametric search to determine the best configuration of the model parameters including epoch length, synchronization metrics, and frequency bands, to achieve the highest accuracy.Our results are promising: we are able to detect the onset of seizure with an accuracy of 88.24%, and localize the onset of the seizure with an accuracy of 76.47%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.