The upper bound technique of limit analysis has been found to be very successful in analyzing the stability of cuttings in normally consolidated clays. However, most soils in their natural states exhibit some anisotropy with respect to shear strength, and some nonhomogeneity with respect to depth. It is difficult to obtain the solution based on the classical limit equilibrium analysis with the assumed noncircular failure plane with such soil properties included. This paper establishes an expression for the stability factor Ns, based on the upper bound technique of limit analysis which yields a close-formed solution for sections in which the following conditions are considered: (a) log-spiral failure-plane, through and below toe; (b) non-homogeneity; (c) anisotropy; and (d) general slope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.