Interaction of p120 with juxtamembrane domain (JMD) of VE-cadherin has been implicated in regulation of endothelial cell-cell adhesion. We used a number of approaches to alter the level of p120 available for binding to VE-cadherin as a means to investigate the role of p120-VE-cadherin interaction in regulation of barrier function in confluent endothelial monolayers. Expression of an epitope-tagged fragment corresponding to JMD of VE-cadherin resulted in a decrease in endothelial barrier function as assessed by changes in albumin clearance and electrical resistance. Binding of JMD-Flag to p120 resulted in a decreased level of p120. In addition to decreasing p120 level, expression of JMD also decreased level of VE-cadherin. Expression of JMD also caused an increase in MLC phosphorylation and rearrangement of actin cytoskeleton, which, coupled with decreased cadherin, can contribute to loss of barrier function. Reducing p120 by siRNA resulted in a decrease in VE-cadherin, whereas increasing the level of p120 increased the level of VE-cadherin, demonstrating that p120 regulates the level of VE-cadherin. Overexpression of p120 was, however, associated with decreased barrier function and rearrangement of the actin cytoskeleton. Interestingly, expression of p120 was able to inhibit thrombin-induced increases in MLC phosphorylation, suggesting that p120 inhibits activation of Rho/Rho kinase pathway in endothelial cells. Excess p120 also prevented JMD-induced increases in MLC phosphorylation, correlating this phosphorylation with Rho/Rho kinase pathway. These findings show p120 plays a major role in regulating endothelial barrier function, as either a decrease or increase of p120 resulted in disruption of permeability across cell monolayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.