Despite recent and growing interest in using Twitter to examine human behavior and attitudes, there is still significant room for growth regarding the ability to leverage Twitter data for social science research. In particular, gleaning demographic information about Twitter users—a key component of much social science research—remains a challenge. This article develops an accurate and reliable data processing approach for social science researchers interested in using Twitter data to examine behaviors and attitudes, as well as the demographic characteristics of the populations expressing or engaging in them. Using information gathered from Twitter users who state an intention to not vote in the 2012 presidential election, we describe and evaluate a method for processing data to retrieve demographic information reported by users that is not encoded as text (e.g., details of images) and evaluate the reliability of these techniques. We end by assessing the challenges of this data collection strategy and discussing how large-scale social media data may benefit demographic researchers.
The digital traces that we leave online are increasingly fruitful sources of data for social scientists, including those interested in demographic research. The collection and use of digital data also presents numerous statistical, computational, and ethical challenges, motivating the development of new research approaches to address these burgeoning issues. In this article, we argue that researchers with formal training in demography—those who have a history of developing innovative approaches to using challenging data—are well positioned to contribute to this area of work. We discuss the benefits and challenges of using digital trace data for social and demographic research, and we review examples of current demographic literature that creatively use digital trace data to study processes related to fertility, mortality, and migration. Focusing on Facebook data for advertisers—a novel “digital census” that has largely been untapped by demographers—we provide illustrative and empirical examples of how demographic researchers can manage issues such as bias and representation when using digital trace data. We conclude by offering our perspective on the road ahead regarding demography and its role in the data revolution.
Background The epidemic of misinformation about COVID-19 transmission, prevention, and treatment has been going on since the start of the pandemic. However, data on the exposure and impact of misinformation is not readily available. Objective We aim to characterize and compare the start, peak, and doubling time of COVID-19 misinformation topics across 8 countries using an exponential growth model usually employed to study infectious disease epidemics. Methods COVID-19 misinformation topics were selected from the World Health Organization Mythbusters website. Data representing exposure was obtained from the Google Trends application programming interface for 8 English-speaking countries. Exponential growth models were used in modeling trends for each country. Results Searches for “coronavirus AND 5G” started at different times but peaked in the same week for 6 countries. Searches for 5G also had the shortest doubling time across all misinformation topics, with the shortest time in Nigeria and South Africa (approximately 4-5 days). Searches for “coronavirus AND ginger” started at the same time (the week of January 19, 2020) for several countries, but peaks were incongruent, and searches did not always grow exponentially after the initial week. Searches for “coronavirus AND sun” had different start times across countries but peaked at the same time for multiple countries. Conclusions Patterns in the start, peak, and doubling time for “coronavirus AND 5G” were different from the other misinformation topics and were mostly consistent across countries assessed, which might be attributable to a lack of public understanding of 5G technology. Understanding the spread of misinformation, similarities and differences across different contexts can help in the development of appropriate interventions for limiting its impact similar to how we address infectious disease epidemics. Furthermore, the rapid proliferation of misinformation that discourages adherence to public health interventions could be predictive of future increases in disease cases.
The digital traces that we leave online are increasingly fruitful sources of data for social scientists, including those interested in demographic research. The collection and use of digital data also presents numerous statistical, computational, and ethical challenges, motivating the development of new research approaches to address these burgeoning issues. In this article, we argue that researchers with formal training in demography-those who have a history of developing innovative approaches to using challenging data-are well positioned to contribute to this area of work. We discuss the benefits and challenges of using digital trace data for social and demographic research, and we review examples of current demographic literature that creatively use digital trace data to study processes related to fertility, mortality, and migration. Focusing on Facebook data for advertisers-a novel "digital census" that has largely been untapped by demographers-we provide illustrative and empirical examples of how demographic researchers can manage issues such as bias and representation when using digital trace data. We conclude by offering our perspective on the road ahead regarding demography and its role in the data revolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.