This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.
Clarifying the functional roles of HLA-G and the variation in the HLA-G gene that affects the expression are increasingly important in reproduction, cancer, organ transplantation, and autoimmune diseases. The homology between HLA genes and the genetic variability within each gene complicates the design of HLA gene-specific genotyping assays. We have designed a high-throughput, cost-efficient, robust, and specific assay for sequencing the full HLA-G gene including the 5'-upstream regulatory region, introns, and the 3'-untranslated region, using the next-generation sequencing (NGS) platform Ion Torrent PGM (Thermo Fisher Scientific, Waltham, Massachusetts). Conventional sequencing methods require the design of multiple primer pairs in order to cover the entire HLA-G gene. Designing multiple primer pairs specific for the HLA-G gene that also target all known alleles is difficult. Here, we present a setup that by the use of long-range polymerase chain reaction amplifies the whole HLA-G gene in a single reaction, which only requires a single HLA-G-specific primer pair. Enzymatic DNA shearing is used to break the long-range PCR product into shorter fragments ranging from 75 to 200 bp in length that are sequenced by NGS.
This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate labs. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using qPCR or NGS due to the presence of competing wild type sequences and the need for calibration. Using dPCR, eighteen laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration and could enable the reproducible application of molecular stratification to guide therapy, and potentially for molecular diagnostics.SIGNIFICANCE STATEMENTThe poor reproducibility of molecular diagnostic methods limits their application in part due to the challenges associated with calibration of what are relative measurement approaches. In this study we investigate the performance of one of the only absolute measurement methods available today, digital PCR (dPCR), and demonstrated that when compared across twenty-one laboratories, dPCR has unprecedented reproducibility. These results were achieved when measuring a challenging single nucleotide variant and without calibration to any reference samples. This opens the possibility for dPCR to offer a method to transform reproducibility in the molecular diagnostic field, both by direct use as well as in support of other currently used clinical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.