The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m2·g−1. The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.
In this contribution, the template assisted synthesis of porous carbons by chemical vapor deposition in porous concrete templates has been described for the first time. Porous concrete made templates can be obtained in almost any geometrical shape and are therefore attractive templates to prepare porous carbon monoliths. The carbon deposition process in porous concrete follows a three-stage-course consisting in an initial period, a period of fast carbon deposition and a period of slow carbon deposition. The carbon growth within the template pores occurs obviously plug-like from the inner to the outer sphere. Any continuous covering of the template pore walls by carbon could not be observed. In difference to porous concrete, the carbon deposition in silica gel is strongly accompanied by mass transfer limitations. For porous concrete, such strong effect has not been observed obviously due to its hierarchical pore system. The template materials have been loaded with carbon by chemical vapor deposition in a flow reactor. The process of the template pore filling has been characterized by the time dependence of the template mass gain. The materials have been characterized by means of X-ray tomography and nitrogen adsorption at 77 K, respectively.
Porous carbon monoliths can be used as key components in a variety of applications, such as energy storage, adsorption and catalysis. The preparation of porous carbon monoliths suffers from several limitations, e.g., time-consuming synthesis steps, the use of hazardous chemicals, limited porosity or mechanical stability. This paper describes the investigation of a simple synthesis route to produce porous carbon monoliths from sustainable carbon precursors. Mixtures from different kinds of cellulose and starch, respectively, have been used as the carbon precursor. Fundamental features of porous monoliths, i.e., the porosity and the mechanic stability, respectively, have been investigated in dependence on the composition of the precursor mixtures. First attempts to explain the observed behavior have already been made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.