Background Fitness trackers and smart watches are frequently used to collect data in longitudinal medical studies. They allow continuous recording in real-life settings, potentially revealing previously uncaptured variabilities of biophysiological parameters and diseases. Adequate device accuracy is a prerequisite for meaningful research. Objective This study aims to assess the heart rate recording accuracy in two previously unvalidated devices: Fitbit Charge 4 and Samsung Galaxy Watch Active2. Methods Participants performed a study protocol comprising 5 resting and sedentary, 2 low-intensity, and 3 high-intensity exercise phases, lasting an average of 19 minutes 27 seconds. Participants wore two wearables simultaneously during all activities: Fitbit Charge 4 and Samsung Galaxy Watch Active2. Reference heart rate data were recorded using a medically certified Holter electrocardiogram. The data of the reference and evaluated devices were synchronized and compared at 1-second intervals. The mean, mean absolute error, mean absolute percentage error, Lin concordance correlation coefficient, Pearson correlation coefficient, and Bland-Altman plots were analyzed. Results A total of 23 healthy adults (mean age 24.2, SD 4.6 years) participated in our study. Overall, and across all activities, the Fitbit Charge 4 slightly underestimated the heart rate, whereas the Samsung Galaxy Watch Active2 overestimated it (−1.66 beats per minute [bpm]/3.84 bpm). The Fitbit Charge 4 achieved a lower mean absolute error during resting and sedentary activities (seated rest: 7.8 vs 9.4; typing: 8.1 vs 11.6; laying down [left]: 7.2 vs 9.4; laying down [back]: 6.0 vs 8.6; and walking slowly: 6.8 vs 7.7 bpm), whereas the Samsung Galaxy Watch Active2 performed better during and after low- and high-intensity activities (standing up: 12.3 vs 9.0; walking fast: 6.1 vs 5.8; stairs: 8.8 vs 6.9; squats: 15.7 vs 6.1; resting: 9.6 vs 5.6 bpm). Conclusions Device accuracy varied with activity. Overall, both devices achieved a mean absolute percentage error of just <10%. Thus, they were considered to produce valid results based on the limits established by previous work in the field. Neither device reached sufficient accuracy during seated rest or keyboard typing. Thus, both devices may be eligible for use in respective studies; however, researchers should consider their individual study requirements.
Background and objectives: Mobile and remote ultrasound devices are becoming increasingly available. The benefits and possible risks of self-guided ultrasound examinations conducted by pregnant women at home have not yet been well explored. This study investigated aspects of feasibility and acceptance, as well as the success rates of such examinations. Methods: In this prospective, single-center, interventional study, forty-six women with singleton pregnancies between 17 + 0 and 29 + 6 weeks of gestation were included in two cohorts, using two different mobile ultrasound systems. The participants examined the fetal heartbeat, fetal profile and amniotic fluid. Aspects of feasibility and acceptance were evaluated using a questionnaire. Success rates in relation to image and video quality were evaluated by healthcare professionals. Results: Two thirds of the women were able to imagine performing the self-guided examination at home, but 87.0% would prefer live support by a professional. Concerns about their own safety and that of the child were expressed by 23.9% of the women. Success rates for locating the target structure were 52.2% for videos of the fetal heartbeat, 52.2% for videos of the amniotic fluid in all four quadrants and 17.9% for videos of the fetal profile. Conclusion: These results show wide acceptance of self-examination using mobile systems for fetal ultrasonography during pregnancy. Image quality was adequate for assessing the amniotic fluid and fetal heartbeat in most participants. Further studies are needed to determine whether ultrasound self-examinations can be implemented in prenatal care and how this would affect the fetomaternal outcome.
BACKGROUND Fitness trackers and smart watches are frequently used to collect data in longitudinal medical studies. They allow continuous recording in real-life settings, potentially revealing previously uncaptured variabilities of biophysiological parameters and diseases. Adequate device accuracy is a prerequisite for meaningful research. OBJECTIVE This study aims to assess the heart rate recording accuracy in two previously unvalidated devices: Fitbit Charge 4 and Samsung Galaxy Watch Active2. METHODS Participants performed a study protocol comprising 5 resting and sedentary, 2 low-intensity, and 3 high-intensity exercise phases, lasting an average of 19 minutes 27 seconds. Participants wore two wearables simultaneously during all activities: Fitbit Charge 4 and Samsung Galaxy Watch Active2. Reference heart rate data were recorded using a medically certified Holter electrocardiogram. The data of the reference and evaluated devices were synchronized and compared at 1-second intervals. The mean, mean absolute error, mean absolute percentage error, Lin concordance correlation coefficient, Pearson correlation coefficient, and Bland-Altman plots were analyzed. RESULTS A total of 23 healthy adults (mean age 24.2, SD 4.6 years) participated in our study. Overall, and across all activities, the Fitbit Charge 4 slightly underestimated the heart rate, whereas the Samsung Galaxy Watch Active2 overestimated it (−1.66 beats per minute [bpm]/3.84 bpm). The Fitbit Charge 4 achieved a lower mean absolute error during resting and sedentary activities (seated rest: 7.8 vs 9.4; typing: 8.1 vs 11.6; laying down [left]: 7.2 vs 9.4; laying down [back]: 6.0 vs 8.6; and walking slowly: 6.8 vs 7.7 bpm), whereas the Samsung Galaxy Watch Active2 performed better during and after low- and high-intensity activities (standing up: 12.3 vs 9.0; walking fast: 6.1 vs 5.8; stairs: 8.8 vs 6.9; squats: 15.7 vs 6.1; resting: 9.6 vs 5.6 bpm). CONCLUSIONS Device accuracy varied with activity. Overall, both devices achieved a mean absolute percentage error of just <10%. Thus, they were considered to produce valid results based on the limits established by previous work in the field. Neither device reached sufficient accuracy during seated rest or keyboard typing. Thus, both devices may be eligible for use in respective studies; however, researchers should consider their individual study requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.