Cyclotron resonance spectra of 2D electrons in HgTe/Cd x Hg 1−x Te (0 1 3) quantum well (QW) heterostructures with inverted band structure have been thoroughly studied in quasiclassical magnetic fields versus the electron concentration varied using the persistent photoconductivity effect. The cyclotron mass is shown to increase with QW width in contrast to QWs with normal band structure. The measured values of cyclotron mass are shown to be systematically less than those calculated using the 8 × 8 Kane model with conventional set of HgTe and CdTe material parameters. In quantizing pulsed magnetic fields (Landau level filling factor less than unity) up to 45 T, both intraband (CR) and interband magnetoabsorption have been studied at radiation wavelengths 14.8 and 11.4 μm for the first time. The results obtained are compared with the allowed transition energies between Landau levels in the valence and conduction bands calculated within the same model, the calculated energies being again systematically less (by 3-14%) than the observed optical transition energies.
Broadband pulsed THz emission with peak power in the sub-mW range has been observed experimentally during avalanche switching in a gallium arsenide bipolar junction transistor at room temperature, while significantly higher total generated power is predicted in simulations. The emission is attributed to very fast oscillations in the conductivity current across the switching channels, which appear as a result of temporal evolution of the field domains generated in highly dense electron-hole plasma. This plasma is formed in turn by powerful impact ionization in multiple field domains of ultrahigh amplitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.