Summary1. More than a quarter of the world's carnivores are threatened, often due to multiple and complex causes. Considerable research efforts are devoted to resolving the mechanisms behind these threats in order to provide a basis for relevant conservation actions. However, even when the underlying mechanisms are known, specific actions aimed at direct support for carnivores are difficult to implement and evaluate at efficient spatial and temporal scales. 2. We report on a 30-year inventory of the critically endangered Fennoscandian arctic fox Vulpes lagopus L., including yearly surveys of 600 fox dens covering 21 000 km 2 . These surveys showed that the population was close to extinction in 2000, with 40-60 adult animals left. However, the population subsequently showed a fourfold increase in size.3. During this time period, conservation actions through supplementary feeding and predator removal were implemented in several regions across Scandinavia, encompassing 79% of the area. To evaluate these actions, we examined the effect of supplemental winter feeding and red fox control applied at different intensities in 10 regions. A path analysis indicated that 47% of the explained variation in population productivity could be attributed to lemming abundance, whereas winter feeding had a 29% effect and red fox control a 20% effect. 4. This confirms that arctic foxes are highly dependent on lemming population fluctuations but also shows that red foxes severely impact the viability of arctic foxes. This study also highlights the importance of implementing conservation actions on extensive spatial and temporal scales, with geographically dispersed actions to scientifically evaluate the effects. We note that population recovery was only seen in regions with a high intensity of management actions. 5. Synthesis and applications. The present study demonstrates that carnivore population declines may be reversed through extensive actions that target specific threats. Fennoscandian arctic fox is still endangered, due to low population connectivity and expected climate impacts on the distribution and dynamics of lemmings and red foxes. Climate warming is expected to contribute to both more irregular lemming dynamics and red fox appearance in tundra areas; however, the effects of climate change can be mitigated through intensive management actions such as supplemental feeding and red fox control.
Summary1. Home range size, spatial organization and territoriality of reproductive Arctic foxes were studied during the summer. The influence of spatial distribution and availability of the main prey was investigated in order to evaluate whether the spatial organization of Arctic foxes was coherent with key predictions of the resource dispersion hypotheses (RDH). The RDH includes the spatial characteristics of resource abundance, while there is also growing attention to the importance of the temporal characteristics of resource abundance. Hence the role of temporal and spatio-temporal predictability of prey explaining carnivore spatial organization was also investigated in this study. 2. The study was conducted on Svalbard; a simple High-Arctic terrestrial ecosystem which allowed unique estimates of prey abundance. The main prey of the Arctic fox (Svalbard reindeer Rangifer tarandus platyrhynchus , seabirds Alcidae and Procellariidae and geese Anseridae ) was surveyed systematically. These surveys revealed highly contrasting patterns in prey abundance within the terrestrial ecosystem. 3. Arctic fox summer home ranges varied in size (4-60 km 2 ), as well as in overlap (17-76%). The diverse spatial organization covaried with spatial and temporal patterns in prey abundance. Small home ranges (10 ± 5·6 km 2 ) with large overlap (76 ± 19·6%) were characteristic for coastal areas where prey was concentrated in small patches and predictable both in space and time. Medium home ranges (23 ± 4·2 km 2 ) and overlap (50 ± 6·6%) occurred inland where prey was clumped in larger patches and less predictable. Large home ranges (52 ± 8·4 km 2 ) with little overlap (17 ± 3·5%) occurred inland where prey was widely scattered and unpredictable. 4. Spatial dispersion and richness of prey resources explained most of the variation in Arctic fox spatial organization. The RDH framework could be used to explain the presence of relaxed territoriality found in this study. We suggest that the observed absence of more permanent social groups is due to the extremely severe winter conditions which force juvenile individuals to disperse from the natal area during the first winter. 5. Predictability of resources was an additional significant factor affecting both home-range size and overlap. Resource predictability captures the degree to which an animal can depend on its environment to offer suitable and secure living conditions over time. 6. This study emphasize the need to incorporate both spatial and temporal characteristics of resource distribution in order to fully understand the diversity of spatial arrangements among carnivores.
Summary1. The development of camera-traps has provided an opportunity to study ecological relationships and population dynamics of species that are rare, difficult to observe or capture. Their use has seen a major increase recently, particularly with the recent progress in methods adapted to species for which individuals cannot be identified. 2. We took advantage of extensive camera-trap data sets from large spatiotemporal-scale studies of a diverse assemblage of avian and mammalian scavengers in subarctic/arctic tundra to determine sampling designs that minimize detection errors (false-negative) and to evaluate the influence of sampling design on estimation of site occupancy. 3. Results showed that raw error rates in daily presence varied between 5 and 30% among species when using time-triggered cameras with a 5-min interval. Using movement-triggered cameras resulted in larger raw error rates, between 30 and 70%, as well as a lower number of daily presences detected. Increasing the time interval from 5 to 20 min greatly increased the raw error rate in daily presence, but it had negligible impacts on estimates and precision of occupancy and detection probability. 4. Occupancy estimates were mostly influenced by variation in the number of days included during the sampling period. For most species, a threshold of between 20 and 30 problem-free days (i.e. without camera-related technical problems) was required to stabilize occupancy and detection probability, as well as to maximize their precision. 5. Based on the results, we discuss guidelines for establishing sampling designs according to the different ecological questions researchers might want to answer. To our knowledge, our study is the first to directly test the influence of sampling design in camera-trap studies, providing guidelines that are likely to be directly applicable to a large range of species and ecosystems.
Isolation of small populations can reduce fitness through inbreeding depression and impede population growth. Outcrossing with only a few unrelated individuals can increase demographic and genetic viability substantially, but few studies have documented such genetic rescue in natural mammal populations. We investigate the effects of immigration in a subpopulation of the endangered Scandinavian arctic fox (), founded by six individuals and isolated for 9 years at an extremely small population size. Based on a long-term pedigree (105 litters, 543 individuals) combined with individual fitness traits, we found evidence for genetic rescue. Natural immigration and gene flow of three outbred males in 2010 resulted in a reduction in population average inbreeding coefficient (), from 0.14 to 0.08 within 5 years. Genetic rescue was further supported by 1.9 times higher juvenile survival and 1.3 times higher breeding success in immigrant first-generation offspring compared with inbred offspring. Five years after immigration, the population had more than doubled in size and allelic richness increased by 41%. This is one of few studies that has documented genetic rescue in a natural mammal population suffering from inbreeding depression and contributes to a growing body of data demonstrating the vital connection between genetics and individual fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.