The functional consequence of long-term retinal detachment in the porcine model is examined by multifocal electroretinography (mfERG). Retinal detachment (RD) in humans leaves permanent visual impairment, despite anatomical successful reattachment surgery. To improve treatment, adjuvant pharmaceutical therapy is needed, and can only be tested in a suitable animal model. The porcine model is promising and the mfERG is well validated in this model. RD was induced in 18 pigs by vitrectomy and healon injection of various concentrations. Preoperatively and 6 weeks postoperatively eight animals were examined by mfERG. The major component P1 was analyzed statistically. Indirect ophthalmoscopy and bilateral color fundus photography (FP) were performed. Selected animals underwent high-resolution optical coherence tomography (OCT). Examination by ophthalmoscopy and FP showed that the RDs remained detached for the 6 weeks of follow-up. The P1 amplitude of the mfERG did not differ significantly between the detached areas, the surrounding attached areas, and the healthy eye (p = 0.25). Similarly, P1 implicit time did not differ between the areas (p = 0.85). The lack of functional consequences of long-term RD makes the porcine model unsuitable for examining adjuvant pharmaceutical RD treatment. Future studies should focus on foveated primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.