Streptococcus gordonii is a primary colonizer, involved in the formation of dental plaque. This bacterium expresses several surface proteins. One of them is the adhesin SspB, which is a member of the Antigen I/II family of proteins. SspB is a large multi-domain protein that has interactions with surface molecules on other bacteria and on host cells, and is thus a key factor in the formation of biofilms. Here, we report the crystal structure of a truncated form of the SspB C-terminal domain, solved by single-wavelength anomalous dispersion to 1.5 Å resolution. The structure represents the first of a C-terminal domain from a streptococcal Antigen I/II protein and is comprised of two structurally related β-sandwich domains, C2 and C3, both with a Ca 2+ ion bound in equivalent positions. In each of the domains, a covalent isopeptide bond is observed between a lysine and an asparagine, a feature that is believed to be a common stabilization mechanism in gram positive surface proteins. S. gordonii biofilms contain attachment sites for the periodontal pathogen Porphyromonas gingivalis and the SspB C-terminal domain has been shown to have one such recognition motif, the SspB adherence region. The motif protrudes from the protein, and serves as a handle for attachment. The structure suggests several additional putative binding surfaces, and other binding clefts may be created when the full-length protein is folded.
The Antigen I/II (AgI/II) family of proteins are cell wall anchored adhesins expressed on the surface of oral streptococci. The AgI/II proteins interact with molecules on other bacteria, on the surface of host cells, and with salivary proteins. Streptococcus gordonii is a commensal bacterium, and one of the primary colonizers that initiate the formation of the oral biofilm. S. gordonii expresses two AgI/II proteins, SspA and SspB that are closely related. One of the domains of SspB, called the variable (V-) domain, is significantly different from corresponding domains in SspA and all other AgI/II proteins. As a first step to elucidate the differences among these proteins, we have determined the crystal structure of the V-domain from S. gordonii SspB at 2.3 Å resolution. The domain comprises a b-supersandwich with a putative binding cleft stabilized by a metal ion. The overall structure of the SspB V-domain is similar to the previously reported V-domain of the Streptococcus mutans protein SpaP, despite their low sequence similarity. In spite of the conserved architecture of the binding cleft, the cavity is significantly smaller in SspB, which may provide clues about the difference in ligand specificity. We also verified that the metal in the binding cleft is a calcium ion, in concurrence with previous biological data. It was previously suggested that AgI/II V-domains are carbohydrate binding. However, we tested that hypothesis by screening the SspB V-domain for binding to over 400 glycoconjucates and found that the domain does not interact with any of the carbohydrates.
The molecular interactions between the enzyme acetylcholinesterase (AChE) and two compound classes consisting of N-[2-(diethylamino)ethyl]benzenesulfonamides and N-[2-(diethylamino)ethyl]benzenemethanesulfonamides have been investigated using organic synthesis, enzymatic assays, X-ray crystallography, and thermodynamic profiling. The inhibitors' aromatic properties were varied to establish structure-activity relationships (SAR) between the inhibitors and the peripheral anionic site (PAS) of AChE. The two structurally similar compound classes proved to have distinctly divergent SARs in terms of their inhibition capacity of AChE. Eight X-ray structures revealed that the two sets have different conformations in PAS. Furthermore, thermodynamic profiles of the binding between compounds and AChE revealed class-dependent differences of the entropy/enthalpy contributions to the free energy of binding. Further development of the entropy-favored compound class resulted in the synthesis of the most potent inhibitor and an extension beyond the established SARs. The divergent SARs will be utilized to develop reversible inhibitors of AChE into reactivators of nerve agent-inhibited AChE.
PDB Reference: C-terminal domain of SpaP, 3opu.SpaP is a 1500-residue adhesin expressed on the surface of the caries-implicated bacterium Streptococcus mutans. SpaP is a member of the antigen I/II (AgI/II) family of proteins expressed by oral streptococci. These surface proteins are crucial for the incorporation of streptococci into dental plaque. The structure of the C-terminal domain of SpaP (residues 1136-1489) was solved and refined to 2.2 Å resolution with six molecules in the asymmetric unit. Similar to a related AgI/II structure, SpaP is stabilized by isopeptide bonds between lysine and asparagine side chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.