Fetal exposure of male rats to di (n-butyl) phthalate (DBP) induces testicular changes remarkably similar to testicular dysgenesis syndrome in humans; these include induction of focal areas of dysgenetic tubules in otherwise normal testes. In searching for the fetal origins of the latter, we used image analysis to show that exposure to 500 mg/kg DBP [embryonic day (E)13.5-20.5)] caused abnormal aggregation of Leydig cells centrally in the fetal testis. This aggregation was not due to increase in Leydig cell number, and Leydig cell size was significantly reduced in DBP-exposed animals, as were testosterone levels and immunoexpression of P450 side-chain cleavage enzyme. The Leydig cell aggregates did not exhibit evidence of focal proliferation at E17.5-19.5. Using confocal microscopy and Leydig (3beta-hydroxysteroid dehydrogenase) and Sertoli (anti-Mullerian hormone) cell-specific markers, we show that fetal Leydig cell aggregates in DBP-exposed animals trap isolated Sertoli cells within them at E21.5. These areas of intermingled cells are still apparent on postnatal d 4, after cessation of DBP treatment, when they may form misshapen seminiferous cords that trap (intratubular) Leydig cells within them. These centrally located dysgenetic tubules contain germ cells in early puberty, but by adulthood they are Sertoli cell only, implying that presence of intratubular Leydig cells interferes with spermatogenesis. It is concluded that DBP-induced fetal Leydig cell aggregation may be a key event in formation of focal dysgenetic areas in the testis, and identification of the mechanisms underlying these events may give new insights into the fetal origins of testicular dysgenesis syndrome disorders in the human.
BackgroundCertain phthalates can impair Leydig cell distribution and steroidogenesis in the fetal rat in utero, but it is unknown whether similar effects might occur in the human.ObjectivesOur aim in this study was to investigate the effects of di(n-butyl) phthalate (DBP), or its metabolite monobutyl phthalate (MBP), on testosterone production and Leydig cell aggregation (LCA) in fetal testis explants from the rat and human, and to compare the results with in vivo findings for DBP-exposed rats. We also wanted to determine if DBP/MBP affects testosterone production in vivo in the neonatal male marmoset.MethodsFetal testis explants obtained from the rat [gestation day (GD)19.5] and from the human (15–19 weeks of gestation) were cultured for 24–48 hr with or without human chorionic gonadotropin (hCG) or 22R-hydroxycholesterol (22R-OH), and with or without DBP/MBP. Pregnant rats and neonatal male marmosets were dosed with 500 mg/kg/day DBP or MBP.ResultsExposure of rats in utero to DBP (500 mg/kg/day) for 48 hr before GD21.5 induced major suppression of intratesticular testosterone levels and cytochrome P450 side chain cleavage enzyme (P450scc) expression; this short-term treatment induced LCA, but was less marked than longer term (GD13.5–20.5) DBP treatment. In vitro, MBP (10−3 M) did not affect basal or 22R-OH-stimulated testosterone production by fetal rat testis explants but slightly attenuated hCG-stimulated steroidogenesis; MBP induced minor LCA in vitro. None of these parameters were affected in human fetal testis explants cultured with 10−3 M MBP for up to 48 hr. Because the in vivo effects of DBP/MBP were not reproduced in vitro in the rat, the absence of MBP effects in vitro on fetal human testes is inconclusive. In newborn (Day 2–7) marmosets, administration of a single dose of 500 mg/kg MBP significantly (p = 0.019) suppressed blood testosterone levels 5 hr later. Similar treatment of newborn co-twin male marmosets for 14 days resulted in increased Leydig cell volume per testis (p = 0.011), compared with co-twin controls; this is consistent with MBP-induced inhibition of steroidogenesis followed by compensatory Leydig cell hyperplasia/hypertrophy.ConclusionsThese findings suggest that MBP/DBP suppresses steroidogenesis by fetal-type Leydig cells in primates as in rodents, but this cannot be studied in vitro.
This study investigated effects of in utero exposure [embryonic day (e)13.5-e21.5] to di(n-butyl) phthalate (DBP) on fetal gonocytes and postnatal germ cell (GC) development in rats and focused on changes (delayed development) relevant to the postulated origins of human carcinoma-in situ cells. DBP treatment resulted in both early (e15.5-e17.5) and late (e19.5-e21.5) effects on gonocytes. The former involved delayed entry of proliferating gonocytes into quiescence, as indicated by prolongation/overexpression of octamer-binding transcription factor 3/4 and retinoblastoma protein phosphorylated at Ser 807/811 and Ki67 plus a 2- to 4-fold increase in gonocyte apoptosis. The late effect of DBP was to induce a greater than 10-fold increase in occurrence of multinucleated gonocytes. GC numbers in DBP-exposed males were reduced (P < 0.01) by 37, 53, 79, and 80% at e21.5 and postnatal d (d) 4, 8, and 15, respectively, with recovery to normal in scrotal testes between postnatal d 25 and 90. The DBP-induced decrease in GC numbers at d 4-8 was associated with delayed exit from quiescence, as indicated by retinoblastoma protein expression and a 28% reduction (P < 0.001) in GC proliferation index at d 6, although the latter was increased by 84% at d 25. The postnatal GC changes were associated with the early, but not late, effects of DBP on gonocytes as short-term DBP treatment from e19.5 to e20.5, induced multinucleated gonocytes as effectively as did treatment from e13.5 to e20.5, but did not reduce GC numbers on d 4. In conclusion, fetal DBP exposure delays normal GC development in both fetal (as early as e15.5) and postnatal life with the possibility of consequences for fertility.
BackgroundFetal exposure of male rats to di(n-butyl) phthalate (DBP) induces reproductive disorders similar to those in human testicular dysgenesis syndrome (TDS), including infertility, cryptorchidism, focal “dysgenetic areas,” and Sertoli cell–only tubules in the adult testis. Humans are widely exposed to DBP, but at much lower levels than those causing adverse effects in rats.ObjectivesThe objective of this study was to evaluate end points affected by DBP action in rats in fetal and adult life that are relevant to human TDS, and to compare their dose sensitivity.MethodsPregnant rats were gavaged daily with corn oil (control) or with 4, 20, 100, or 500 mg/kg DBP. We examined adult end points of TDS (infertility, cryptorchidism) and indicators within the fetal testis of dysgenesis [abnormal Leydig cell (LC) aggregation, multinucleated gonocytes (MNGs)], as well as conditions that may result from these indicators in adulthood (occurrence of focal dysgenetic areas). Fetal testis weight and testicular testosterone levels were also evaluated.ResultsThe fetal end points analyzed (testicular testosterone levels, abnormal LC aggregation, occurrence of MNGs) were most sensitive to disruption by DBP, as all were significantly affected at a dose of 100 mg/kg/day DBP, with a trend toward effects occurring at 20 mg/kg/day DBP; adult end points were affected consistently only by 500 mg/kg/day DBP.ConclusionsThe fetal end points we evaluated can be objectively quantified and may prove helpful in evaluating the health risk of exposure to DBP and other phthalates, as well as identifying DBP-sensitive fetal events that have adult consequences/end points that are identifiable in human TDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.