Telomerase plays an important role during immortalization and malignant transformation as crucial steps in the development of human cancer. In a cellular model of oral–esophageal carcinogenesis, recapitulating the human disease, immortalization occurred independent of the activation of telomerase but through the recombination‐based alternative lengthening of telomeres (ALT). In this stepwise model, additional overexpression of EGFR led to in vitro transformation and activation of telomerase with homogeneous telomere elongation in already immortalized oral squamous epithelial cells (OKF6‐D1_dnp53). More interestingly, EGFR overexpression activated the PI3K/AKT pathway. This strongly suggested a role for telomerase in tumor progression in addition to just elongating telomeres and inferring an immortalized state. Therefore, we sought to identify the regulatory mechanisms involved in this activation of telomerase and in vitro transformation induced by EGFR. In the present study we demonstrate that telomerase expression and activity are induced through both direct phosphorylation of hTERT by phospho‐AKT as well as PI3K‐dependent transcriptional regulation involving Hif1‐alpha as a key transcription factor. Furthermore, EGFR overexpression enhanced cell cycle progression and proliferation via phosphorylation and translocation of p21. Whereas immortalization was induced by ALT, in vitro transformation was associated with telomerase activation, supporting an additional role for telomerase in tumor progression besides elongating telomeres. (Cancer Sci 2011; 102: 351–360)
BackgroundFetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved.MethodsWe performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature.ResultsWe identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found.ConclusionOur study underlines the broad locus heterogeneity of FA with well-established and atypical genotype–phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.