We present an investigation into adopting a model of the retino-cortical mapping, found in biological visual systems, to improve the efficiency of image analysis using Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric perception systems. This work has now enabled DCNNs to process input images approaching
one million pixels
in size,
in real time
, using only consumer grade graphics processor (GPU) hardware
in a single pass of the DCNN
.
We present ongoing work to harness biological approaches to achieving highly efficient egocentric perception by combining the spacevariant imaging architecture of the mammalian retina with Deep Learning methods. By pre-processing images collected by means of eye-tracking glasses to control the fixation locations of a software retina model, we demonstrate that we can reduce the input to a DCNN by a factor of 3, reduce the required number of training epochs and obtain over 98% classification rates when training and validating the system on a database of over 26,000 images of 9 object classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.