Organic-inorganic halide perovskite solar cells have recently emerged as high-performance photovoltaic devices with low cost, promising for affordable large-scale energy production, with laboratory cells already exceeding 20% power conversion efficiency (PCE). To date, a relatively expensive organic hole-conducting molecule with low conductivity, namely spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9'- spirobifluorene), is employed widely to achieve highly efficient perovskite solar cells. Here, we report that by replacing spiro-OMeTAD with much cheaper and highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) we can achieve PCE of up to 14.5%, with PEDOT cast from a toluene based ink. However, the stabilized power output of the PEDOT-based devices is only 6.6%, in comparison to 9.4% for the spiro-OMeTAD-based cells. We deduce that accelerated recombination is the cause for this lower stabilized power output and postulate that reduced levels of p-doping are required to match the stabilized performance of Spiro-OMeTAD. The entirely of the materials employed in the perovskite solar cell are now available at commodity scale and extremely inexpensive.
Subtle but distinctive: The stereostructure of the biologically highly promising antimitotic agent leiodermatolide was uncertain. A short, efficient, and flexible total synthesis based on ring-closing alkyne metathesis as the key step has now solved the puzzle. Subtle differences in the 1H NMR spectra of the structure shown and the conceivable isomer proved invaluable for the assignment
and fill factor (FF). The study demonstrates that such an approach can represent an interesting tool for the effective modulation of the photovoltaic properties of the organic solar cells (OSCs) at a moderate cost.
The quest for new materials is one of the main factors propelling recent advances in organic photovoltaics. Star‐shaped small molecules (SSMs) have been proven promising candidates as perspective donor material due to the increase in numbers of excitation pathways caused by the degeneracy of the lowest unoccupied molecular orbital (LUMO) level. In order to unravel the pathways of the initial photon‐to‐charge conversion, the photovoltaic blends based on three different SSMs with a generic structure of N(phenylene‐nthiophene‐dicyanovinyl‐alkyl)3 (n = 1–3), and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) acceptor are investigated by ultrafast photoinduced absorption spectroscopy assisted by density functional theory calculations. It is shown that both electron transfer from SSMs to PC71BM and hole transfer from PC71BM to SSMs are equally significant for generation of long‐lived charges. In contrast, intramolecular (intra‐SSM) charge separation results in geminate recombination and therefore constitutes a loss channel. Overall, up to 60% of long‐lived separated charges are generated at the optimal PC71BM concentrations. The obtained results suggest that further improvement of the SSM‐based solar cells is feasible via optimization of blend morphology and by suppressing the intra‐SSM recombination channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.