Although the ability to use the Earth's magnetic field for long distance orientation and navigation has been demonstrated in many animals, the search for the appropriate receptor has not yet finished. It is also not entirely clear whether the use of magnetic field information is restricted to specialists like migrating birds, or whether it is a sense that is also suited to short distance orientation by avian species. We successfully trained nonmigratory zebra finches in a four-choice food-search task to use the natural magnetic field as well as an experimentally shifted field for short distance orientation, supporting the view that magnetic field perception may be a sense existing in all bird species. By using a conditioning technique in a standard laboratory animal, our experiments will provide an ideal basis for the search for the physiological mechanisms of magnetic field perception.
Background: Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives.
BackgroundThe primary visual cortex of mammals is characterised by a retinotopic representation of the visual field. It has therefore been speculated that the visual wulst, the avian homologue of the visual cortex, also contains such a retinotopic map. We examined this for the first time by optical imaging of intrinsic signals in zebra finches, a small songbird with laterally placed eyes. In addition to the visual wulst, we visualised the retinotopic map of the optic tectum which is homologue to the superior colliculus in mammals.Methodology/Principal FindingsFor the optic tectum, our results confirmed previous accounts of topography based on anatomical studies and conventional electrophysiology. Within the visual wulst, the retinotopy revealed by our experiments has not been illustrated convincingly before. The frontal part of the visual field (0°±30° azimuth) was not represented in the retinotopic map. The visual field from 30°–60° azimuth showed stronger magnification compared with more lateral regions. Only stimuli within elevations between about 20° and 40° above the horizon elicited neuronal activation. Activation from other elevations was masked by activation of the preferred region. Most interestingly, we observed more than one retinotopic representation of visual space within the visual wulst, which indicates that the avian wulst, like the visual cortex in mammals, may show some compartmentation parallel to the surface in addition to its layered structure.Conclusion/SignificanceOur results show the applicability of the optical imaging method also for small songbirds. We obtained a more detailed picture of retinotopic maps in birds, especially on the functional neuronal organisation of the visual wulst. Our findings support the notion of homology of visual wulst and visual cortex by showing that there is a functional correspondence between the two areas but also raise questions based on considerable differences between avian and mammalian retinotopic representations.
Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds.
The visual wulst is the telencephalic target of the avian thalamofugal visual system. It contains several retinotopically organised representations of the contralateral visual field. We used optical imaging of intrinsic signals, electrophysiological recordings, and retrograde tracing with two fluorescent tracers to evaluate properties of these representations in the zebra finch, a songbird with laterally placed eyes. Our experiments revealed that there is some variability of the neuronal maps between individuals and also concerning the number of detectable maps. It was nonetheless possible to identify three different maps, a posterolateral, a posteromedial, and an anterior one, which were quite constant in their relation to each other. The posterolateral map was in contrast to the two others constantly visible in each successful experiment. The topography of the two other maps was mirrored against that map. Electrophysiological recordings in the anterior and the posterolateral map revealed that all units responded to flashes and to moving bars. Mean directional preferences as well as latencies were different between neurons of the two maps. Tracing experiments confirmed previous reports on the thalamo-wulst connections and showed that the anterior and the posterolateral map receive projections from separate clusters within the thalamic nuclei. Maps are connected to each other by wulst intrinsic projections. Our experiments confirm that the avian visual wulst contains several separate retinotopic maps with both different physiological properties and different thalamo-wulst afferents. This confirms that the functional organization of the visual wulst is very similar to its mammalian equivalent, the visual cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.