Bite force is a key performance trait in lizards because biting is involved in many ecologically relevant tasks, including foraging, fighting and mating. Several factors have been suggested to impact bite force in lizards, such as head morphology (proximate factors), or diet, intraspecific competition and habitat characteristics (ultimate factors). However, these have been generally investigated separately and mostly at the interspecific level. Here we tested which factors drive variation in bite force at the population level and to what extent. Our study includes 20 populations of two closely related lacertid species, Podarcis melisellensis and Podarcis sicula, which inhabit islands in the Adriatic. We found that lizards with more forceful bites have relatively wider and taller heads, and consume more hard prey and plant material. Island isolation correlates with bite force, probably by driving resource availability. Bite force is only poorly explained by proxies of intraspecific competition. The linear distance from a large island and the proportion of difficult-to-reduce food items consumed are the ultimate factors that explain most of the variation in bite force. Our findings suggest that the way in which morphological variation affects bite force is species-specific, probably reflecting the different selective pressures operating on the two species.
Access to resources is a dynamic and multicausal process that determines the success and survival of a population. It is therefore often challenging to disentangle the factors affecting ecological traits like diet. Insular habitats provide a good opportunity to study how variation in diet originates, in particular in populations of mesopredators such as lizards. Indeed, high levels of population density associated with low food abundance and low predation are selection pressures typically observed on islands. In the present study, the diet of eighteen insular populations of two closely related species of lacertid lizards (Podarcis sicula and Podarcis melisellensis) was assessed. Our results reveal that despite dietary variability among populations, diet taxonomic diversity is not impacted by island area. In contrast, however, diet disparity metrics, based on the variability in the physical (hardness) and behavioral (evasiveness) properties of ingested food items, are correlated with island size. These findings suggest that an increase in intraspecific competition for access to resources may induce shifts in functional components of the diet. Additionally, the two species differed in the relation between diet disparity and island area suggesting that different strategies exist to deal with low food abundance in these two species. Finally, sexual dimorphism in diet and head dimensions is not greater on smaller islands, in contrast to our predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.