Regulatory myeloid immune cells, such as myeloid-derived suppressor cells (MDSCs), populate inflamed or cancer tissue and block immune cell effector functions. Lack of mechanistic insight 54 into MDSC suppressive activity and a marker for their identification hampered attempts to 55 overcome T cell-inhibition and unleash anti-cancer immunity. Here we report that human MDSCs 56 were characterized by strongly reduced metabolism and conferred this compromised metabolic 57 state to CD8 + T cells thereby paralyzing their effector functions. We identified accumulation of the dicarbonyl-radical methylglyoxal, generated by semicarbazide-sensitive amine oxidase (SSAO), to cause the metabolic phenotype of MDSCs and MDSC-mediated paralysis of CD8 + T cells. In a murine cancer model, neutralization of dicarbonyl-activity overcame MDSC-mediated T cell-suppression and together with checkpoint inhibition improved efficacy of cancer immune therapy. Our results identify the dicarbonyl methylglyoxal as marker metabolite for MDSCs that mediates T cell paralysis and can serve as target to improve cancer immune therapy. Results 92 Dormant metabolic phenotype in MDSCs 93Suppressive myeloid cells arise during chronic inflammation in tissues 17 , and tissue stromal cells 94 induce transition of monocytes into monocytic MDSCs 16 . We exploited this capacity of stromal cells to convert human peripheral blood monocytes into MDSCs, which are phenotypically similar 96 to CD14 + HLA-DR -/low suppressive myeloid cells directly isolated from cancer patients 16 , to characterize the mechanism of MDSC-mediated T cell suppression. Transcriptome analysis showed less than 200 differentially expressed genes between MDSCs and monocytes, which did not include surface molecules suitable for phenotypic discrimination or known immune suppressive mediators to explain their suppressive activity (supplementary table I-IV, Extended Data Fig. 1). Consistently, blockade of known immune suppressive mediators did not prevent MDSC-mediated T cell suppression (Extended Data Fig. 2). Surprisingly, we found downregulation of genes encoding glycolysis-related enzymes in MDSCs (Fig. 1a, and Extended Data Table V).Indeed, MDSCs showed reduced glucose uptake and Glut1 surface expression (Fig. 1b), the main transporter mediating glucose uptake in immune cells. As predicted from gene expression analysis, hexokinase activity was lower in MDSCs (Fig. 1c). To validate these results, we isolated CD14 + HLA-DR -/lo cells from tumor tissue of patients with hepatocellular carcinoma by enzymatic digestion followed by density centrifugation and flow cytometric cell sorting. We confirmed reduced glucose uptake and hexokinase activity in CD14 + HLA-DR -/low cells isolated from tumor tissue of cancer patients (Fig. 1d,e, and Extended Data Table VI), which are considered to represent MDSCs. Strikingly, MDSCs failed to utilize glucose for glycolysis and also showed reduced cellular bioenergetics, i.e. lower mitochondrial membrane potential quantified by the potentiometric mitochondrial ...
Polyfunctional CD4 or CD8 T cells are proposed to represent a correlate of immune control for persistent viruses as well as for vaccine mediated protection against infection. A well-suited methodology to study complex functional phenotypes of antiviral T cells is the combined staining of intracellular cytokines and phenotypic marker expression using polychromatic flow cytometry. In this study we analyzed the effect of an overnight resting period at 37°C on the quantity and functionality of HIV-1, EBV, CMV, HBV and HCV specific CD4 and CD8 T-cell responses in a cohort of 21 individuals. We quantified total antigen specific T cells by multimer staining and used 10-color intracellular cytokine staining (ICS) to determine IFNγ, TNFα, IL2 and MIP1β production. After an overnight resting significantly higher numbers of functionally active T cells were detectable by ICS for all tested antigen specificities, whereas the total number of antigen specific T cells determined by multimer staining remained unchanged. Overnight resting shifted the quality of T-cell responses towards polyfunctionality and increased antigen sensitivity of T cells. Our data suggest that the observed effect is mediated by T cells rather than by antigen presenting cells. We conclude that overnight resting of PBMC prior to ex vivo analysis of antiviral T-cell responses represents an efficient method to increase sensitivity of ICS-based methods and has a prominent impact on the functional phenotype of T cells.
Anti-viral immunity continuously declines over time after SARS-CoV-2 infection. Here, we characterize the dynamics of anti-viral immunity during long-term follow-up and after BNT162b2 mRNA-vaccination in convalescents after asymptomatic or mild SARS-CoV-2 infection. Virus-specific and virus-neutralizing antibody titers rapidly declined in convalescents over 9 months after infection, whereas virus-specific cytokine-producing polyfunctional T cells persisted, among which IL-2-producing T cells correlated with virus-neutralizing antibody titers. Among convalescents, 5% of individuals failed to mount long-lasting immunity after infection and showed a delayed response to vaccination compared to 1% of naïve vaccinees, but successfully responded to prime/boost vaccination. During the follow-up period, 8% of convalescents showed a selective increase in virus-neutralizing antibody titers without accompanying increased frequencies of circulating SARS-CoV-2-specific T cells. The same convalescents, however, responded to vaccination with simultaneous increase in antibody and T cell immunity revealing the strength of mRNA-vaccination to increase virus-specific immunity in convalescents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.