Mapping the conditions of spider silk proteins along the silk gland, and combining with molecular studies, reveals a pH controlled switch between lock and trigger forms, providing insights into spider silk formation.
The mechanisms controlling the conversion of spider silk proteins into insoluble fibres, which happens in a fraction of a second and in a defined region of the silk glands, are still unresolved. The N-terminal domain changes conformation and forms a homodimer when pH is lowered from 7 to 6; however, the molecular details still remain to be determined. Here we investigate site-directed mutants of the N-terminal domain from Euprosthenops australis major ampullate spidroin 1 and find that the charged residues D40, R60 and K65 mediate intersubunit electrostatic interactions. Protonation of E79 and E119 is required for structural conversions of the subunits into a dimer conformation, and subsequent protonation of E84 around pH 5.7 leads to the formation of a fully stable dimer. These residues are highly conserved, indicating that the now proposed three-step mechanism prevents premature aggregation of spidroins and enables fast formation of spider silk fibres in general.
Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.
Aims: The study was conducted with an aim to optimize the transformation efficiency of the Gram‐positive bacterium Staphylococcus carnosus to a level that would enable the creation of cell surface displayed combinatorial protein libraries. Methods and Results: We have thoroughly investigated a number of different parameters for: (i) the preparation of electrocompetent cells; (ii) the treatment of cells before electroporation; (iii) the electroporation step itself; and (iv) improved recovery of transformed cells. Furthermore, a method for heat‐induced inactivation of the host cell restriction system was devised to allow efficient transformation of the staphylococci with DNA prepared from other species, such as Escherichia coli. Previously described protocols for S. carnosus, giving transformation frequencies of approximately 102 transformants per transformation could be improved to reproducible procedures giving around 106 transformants for a single electroporation event, using plasmid DNA prepared from either S. carnosus or E. coli. The transformed staphylococcal cells were analysed using flow cytometry to verify that the entire cell population retained the introduced plasmid DNA and expressed the recombinant protein in a functional form on the cell surface at the same level as the positive control population. Conclusions: The results demonstrate that the transformation frequency for S. carnosus could be dramatically increased through optimization of the entire electroporation process, and that the restriction barrier for interspecies DNA transfer, could be inactivated by heat treatment of the cells prior to electroporation. Significance and Impact of the Study: The generation of large combinatorial protein libraries, displayed on the surface of S. carnosus can be envisioned in the near future, thus dramatically improving the selection compared with the traditional biopanning procedure used in phage display.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.