The aim of this study was to compare ochratoxin A (OTA) levels in pig tissues and biological fluids after animal exposure to contaminated diet (250 μg OTA/kg of feed) during 4 weeks of fattening. OTA concentrations were quantified using a validated immunoassay method (ELISA) and high-performance liquid chromatography with fluorescence detector (HPLC-FD). The highest mean OTA concentration in pig tissues was determined in kidneys of exposed animals (13.87 ± 1.41 μg/kg), followed by lungs (10.47 ± 1.97 μg/kg), liver (7.28 ± 1.75 μg/kg), spleen (4.81 ± 0.99 μg/kg), muscle tissue (4.72 ± 0.86 μg/kg), fat tissue (4.11 ± 0.88 μg/kg), heart (3.71 ± 1.09 μg/kg), and brain (3.01 ± 0.25 μg/kg). Furthermore, on the last day of exposure (day 28), significantly higher mean OTA levels were determined in urine (16.06 ± 3.09 μg/L) in comparison to serum (4.77 ± 1.57 μg/L) showing that OTA urine analysis could be a good marker to identify elevated levels of this contaminant in porcine tissues used for human consumption. This study gave guidelines for the most efficient OTA control in pig-derived biological materials that can be exercised at slaughterhouses.
To investigate into the T-2 and HT-2 toxin occurrence, 240 samples of unprocessed cereals (maize, wheat, barley, and oats) were sampled from different fields located in three Croatian regions during 2017–2018. In all samples, sum concentrations of T-2/HT-2 toxin were determined using the ELISA method, while the LC-MS/MS was used as a confirmatory method for both mycotoxins in positive samples (>LOD) and the establishment of T-2 over HT-2 toxin ratios. The results showed oats to be the most contaminated cereal, with T-2/HT-2 toxins detected in 70.0% of samples, followed by barley (40.9%), maize (26.8%) and wheat (19.2%), with the mean T-2/HT-2 ratio ranging from 1:2.7 in maize to 1:4.4 in oats. Sum T-2/HT-2 concentrations in two maize samples were higher than the indicative level recommended by the European Commission, necessitating subsequent investigations into the conditions under which these poorly investigated mycotoxins are produced. Statistically significantly (p < 0.05) higher concentrations of T-2/HT-2 toxin were determined in oats throughout study regions as compared to those found in wheat, but not maize and barley, while the concentrations of these mycotoxins were related to the regional weather in Croatia.
The aim of this study was to identify and compare surface mycobiota of traditional and industrial Croatian dry-fermented sausage Kulen, especially toxicogenic species, and to detect contamination with mycotoxins recognized as the most important for meat products. Identification of mould species was performed by sequence analysis of beta- tubulin and calmodulin gene, while the determination of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and cyclopiazonic acid (CPA) was carried out using the LC-MS/MS (liquid chromatography-tandem mass spectrometry) method. The results showed a significantly higher number of mould isolates and greater species (including of those mycotoxigenic) diversity in traditional Kulen samples in comparison with the industrial ones. P. commune, as a potential CPA-producer, was the most represented in traditional Kulen (19.0%), followed by P. solitum (16.6%), which was the most represented in industrial Kulen samples (23.8%). The results also showed that 69% of the traditional sausage samples were contaminated with either CPA or OTA in concentrations of up to 13.35 µg/kg and 6.95 µg/kg, respectively, while in the industrial samples only OTA was detected (in a single sample in the concentration of 0.42 µg/kg). Mycotoxin AFB1 and its producers were not detected in any of the analysed samples (<LOD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.