In our study, early period degradation (10 days) of Scots pine (Pinus sylvestris L.) sapwood by the brown-rot fungus Coniophora puteana (Schum.: Fr.) Karst. (BAM Ebw.15) was followed at the wood chemical composition and ultrastructure-level, and highlighted the generation of reactive oxygen species (ROS). An advanced decay period of 50 days was chosen for comparison of the degradation dynamics. Scanning UV microspectrophotometry (UMSP) analyses of lignin distribution in wood cells revealed that the linkages of lignin and polysaccharides were already disrupted in the early period of fungal attack. An increase in the lignin absorption A(280) value from 0.24 (control) to 0.44 in decayed wood was attributed to its oxidative modification which has been proposed to be generated by Fenton reaction derived ROS. The wood weight loss in the initial degradation period was 2%, whilst cellulose and lignin content decreased by 6.7% and 1%, respectively. Lignin methoxyl (-OCH3) content decreased from 15.1% (control) to 14.2% in decayed wood. Diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy corroborated the moderate loss in the hemicellulose and lignin degradation accompanying degradation. Electron paramagnetic resonance spectra and spin trapping confirmed the generation of ROS, such as hydroxyl radicals (HO∙), in the early wood degradation period. Our results showed that irreversible changes in wood structure started immediately after wood colonisation by fungal hyphae and the results generated here will assist in the understanding of the biochemical mechanisms of wood biodegradation by brown-rot fungi with the ultimate aim of developing novel wood protection methods.
The chemical structure of wood changes significantly during thermal modification, significantly influencing the behaviour of wood during weathering. In this study, the effect of different wavelength ranges on thermally modified and unmodified aspen (Populus tremula L.) wood during solar irradiation was investigated. Irradiation was performed by exposing wood to natural solar irradiation under filters transmitting different wavelength ranges. For both woods, the magnitude of characteristic change (discolouration, changes in reflectance, and chemical composition) clearly depended on the solar wavelength bands, but the trends of the changes differed. For unmodified wood, the magnitude of the characteristic changes increased as the portion of shortwavelength radiation in the light increased. However, UV radiation was not found to be the dominant factor influencing changes in thermally modified wood during solar irradiation. The colour and chemical structure of thermally modified wood changed substantially for all studied irradiation conditions.
The chemical changes in birch wood occurring at thermo-hydro treatment (THT) was studied at temperatures (T) of 150, 160 and 170°C by analytical pyrolysis [Py-gas chromatography/mass spectrometry/flame ionisation detector (GC/MS/FID)], elemental analysis and traditional wet-chemical analysis. THT wood (THTW) was also extracted with acetone. Mass losses (ML) due to THT and acetone extraction of THTW were considered for material balance calculations. The holocellulose and hemicellulose (HC) contents decrease with increasing THT temperature (THTT), thus the apparent lignin content is elevated by ca. 20%. The HC degradation begins at 150°C, while that of α-cellulose modification at 170°C. Compared to unmodified birch, the THT170°Cmaterial contains ca. 10% less α-cellulose and up to 40% less HC. The Py-GC/MS also indicates decreasing amounts of volatile products from polymeric carbohydrates (CHs) and lignin origin as a function of increasing THTT. The identified CH-based Py products of THT170°Cof non-extracted (ne) and extracted (e) materials resulted in 13 and 22% weight decrements, respectively, while the lignin-type Py products were reduced by 13 and 49%, respectively. With increasing THTT, the total content of CO2, water and methanol decreases, and the amount of unidentified compounds increases by 30%.
As a vast majority of glued wood products are intended for outdoor use or for building construction, impregnation with different agents is important for ensuring proper performance. It has been shown that the impregnation prior to gluing has several disadvantages, therefore the possibility of carrying out impregnation after gluing is analysed in the present research. Impregnation efficiency as well as the effect on the bond quality is evaluated for the one-component polyurethane glued wood specimens. The results showed that the impregnation with Cu preservative after gluing did not affect the shear strength of the glued wood specimens, but did significantly restrict Cu preservative penetration due to the adhesive bondlines. Considering the results, the possibility of improving the impregnation efficiency was also investigated. By using specific adhesive application designs, which cover the bondline only partially, it was possible to improve the impregnation efficiency. However, the Cu distribution was inhomogeneous and the improvement was noticeable only up to the second bondline. The partial adhesive application design also affected the bond strength of glued wood specimens, which resulted in a decrease both in dry and wet state. However, the reduction was not so sever as to cause delamination during three consecutive wetting and drying cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.