International audienceThe SPICAM experiment onboard Mars Express has accumulated during the last decade a wealth of observations that has permitted a detailed characterization of the atmospheric composition and activity from the near-surface up to above the exosphere. The SPICAM climatology is one of the longest assembled to date by an instrument in orbit around Mars, offering the opportunity to study the fate of major volatile species in the Martian atmosphere over a multi-(Mars)year timeframe. With his dual ultraviolet (UV)-near Infrared channels, SPICAM observes spectral ranges encompassing signatures created by a variety atmospheric gases, from major (CO2) to trace species (H2O, O3). Here, we present a synthesis of the observations collected for water vapor, ozone, clouds and dust, carbon dioxide, exospheric hydrogen and airglows. The assembled climatology covers the MY 27 to MY 31 period. However, the monitoring of UV-derived species was interrupted at the end of 2014 (MY30) due to failure of the UV channel. A SO2 detection attempt was undertaken, but proved unsuccessful from regional to global scales (with upper limit greater than already published ones). One particular conclusion that stands out from this overview work concerns the way the Martian atmosphere organizes an efficient mass transfer between the lower and the upper atmospheric reservoirs. This highway to space, as we name it, is best illustrated by water and hydrogen, both species having been monitored by SPICAM in their respective atmospheric reservoir. Coupling between the two appear to occur on seasonal timescales, much shorter than theoretical predictions
This paper presents stratospheric aerosol climate records developed in the framework of the Aerosol_cci project, one of the 14 parallel projects from the ESA Climate Change Initiative. These data records were processed from a stratospheric aerosol dataset derived from the GOMOS experiment, using an inversion algorithm optimized for aerosol retrieval, called AerGOM. They provide a suite of aerosol parameters, such as the aerosol extinction coefficient at different wavelengths in the UV–visible range. The extinction record includes the total extinction as well as separate fields for liquid sulfate aerosols and polar stratospheric clouds (PSCs). Several additional fields (PSC flag, etc.) are also provided. The resulting stratospheric aerosol dataset, which spans the whole duration of the GOMOS mission (2002 − 2012), was validated using different reference datasets (lidar and balloon profiles). In the present paper, the emphasis is put on the extinction records. After a thorough analysis of the original AerGOM dataset, we describe the methodology used to construct the gridded CCI-GOMOS dataset and the resulting improvements on both the AerGOM algorithm and the binning procedure, in terms of spatio-temporal resolution, coverage and data quality. The extinction datasets were validated using lidar profiles from three ground-based stations (Mauna Loa, Garmisch-Partenkirchen, Dumont d'Urville). The median difference of the CCI-GOMOS (Level 3) extinction and ground-based lidar profiles is between ~ 15% and ~ 45% in the 16–21 km altitude range, depending on the considered site and aerosol type. The CCI-GOMOS dataset was subsequently used, together with a MIPAS SO2 time series, to update a volcanic eruption inventory published previously, thus providing a more comprehensive list of eruptions for the ENVISAT period (2002–2012). The number of quantified eruptions increases from 102 to 230 in the updated inventory. This new inventory was used to simulate the evolution of the global radiative forcing by application of the EMAC chemistry-climate model. Results of this simulation improve the agreement between modelled global radiative forcing of stratospheric aerosols at about 100 hPa compared to values estimated from observations. Medium eruptions like the ones of Soufriere Hills/Rabaul (2006), Sarychev (2009) and Nabro (2011) cause a forcing change from about − 0.1 W/m2 to − 0.2 W/m2
Abstract. This paper presents a climatology of the mesospheric sodium layer built from the processing of 7 years of GOMOS data. With respect to preliminary results already published for the year 2003, a more careful analysis was applied to the averaging of occultations inside the climatological bins (10 • in latitude-1 month). Also, the slant path absorption lines of the Na doublet around 589 nm shows evidence of partial saturation that was responsible for an underestimation of the Na concentration in our previous results. The sodium climatology has been validated with respect to the Fort Collins lidar measurements and, to a lesser extent, to the OSIRIS 2003-2004 data. Despite the important natural sodium variability, we have shown that the Na vertical column has a marked semi-annual oscillation at low latitudes that merges into an annual oscillation in the polar regions,a spatial distribution pattern that was unreported so far. The sodium layer seems to be clearly influenced by the mesospheric global circulation and the altitude of the layer shows clear signs of subsidence during polar winter. The climatology has been parameterized by time-latitude robust fits to alCorrespondence to: D. Fussen (didier.fussen@oma.be) low for easy use. Taking into account the non-linearity of the transmittance due to partial saturation, an experimental approach is proposed to derive mesospheric temperatures from limb remote sounding measurements.
Solar occultation in the infrared, part of the Spectoscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument onboard Venus Express, combines an echelle grating spectrometer with an acousto-optic tunable filter (AOTF). It performs solar occultation measurements in the IR region at high spectral resolution. The wavelength range probed allows a detailed chemical inventory of Venus's atmosphere above the cloud layer, highlighting the vertical distribution of gases. A general description of the instrument and its in-flight performance is given. Different calibrations and data corrections are investigated, in particular the dark current and thermal background, the nonlinearity and pixel-to-pixel variability of the detector, the sensitivity of the instrument, the AOTF properties, and the spectral calibration and resolution.
Abstract. Although the retrieval of aerosol extinction coefficients from satellite remote measurements is notoriously difficult (in comparison with gaseous species) due to the lack of typical spectral signatures, important information can be obtained. In this paper we present an overview of the current operational nighttime UV/Vis aerosol extinction profile results for the GOMOS star occultation instrument, spanning the period from August 2002 to May 2008. Some problems still remain, such as the ones associated with incomplete scintillation correction and the aerosol spectral law implementation, but good quality extinction values are obtained at a wavelength of 500 nm. Typical phenomena associated with atmospheric particulate matter in the Upper Troposphere/Lower Stratosphere (UTLS) are easily identified: Polar Stratospheric Clouds, tropical subvisual cirrus clouds, background stratospheric aerosols, and post-eruption volcanic aerosols (with their subsequent dispersion around the globe). For the first time, we show comparisons of GO-MOS 500 nm particle extinction profiles with the ones of other satellite occultation instruments (SAGE II, SAGE III and POAM III), of which the good agreement lends credibility to the GOMOS data set. Yearly zonal statistics are presented for the entire period considered. Time series furthermore convincingly show an important new finding: the sensitivity of GOMOS to the sulfate input by moderate volcanic eruptions such as Manam (2005) itative analysis of the data agrees well with the theoretical PSC formation temperature. Therefore, the importance of the GOMOS aerosol/cloud extinction profile data set is clear: a long-term data record of PSCs, subvisual cirrus, and background and volcanic aerosols in the UTLS region, consisting of hundreds of thousands of altitude profiles with near-global coverage, with the potential to fill the aerosol/cloud extinction data gap left behind after the discontinuation of occultation instruments such as SAGE II, SAGE III and POAM III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.