BackgroundNosocomial infections caused by the bacterial pathogen Staphylococcus aureus can lead to serious complications due to the varying presence of secreted toxins. Comparative studies of genomic information and production rates are needed to assess the pathogenic potential of isolated strains. Genotypic and phenotypic profiling of clinical and colonising isolates of S. aureus was used to characterise the release of exotoxins. Blood isolates were compared with colonisation strains to determine similarities and differences of single strains and clusters.ResultsFifty-one fresh isolates obtained from colonised individuals (n = 29) and S. aureus bacteremia (SAB) patients (n = 22) were investigated. The prevalence of genes encoding for three cytolysins (alpha/beta/gamma toxin) and twenty-four superantigens (SEA-SElX) was determined. Isolates exhibited eighteen distinct combinations of superantigens. Sequence analysis identified mutated open reading frames in hla in 13.7 % of all strains, in selw (92.2 %) and in selx (15.7 %). All corrupted genes were associated with specific clonal complexes. Functional assessment of alpha toxin activity by a rabbit erythrocyte lysis assay revealed that supernatants lacking alpha toxin still displayed hemolysis. This was due to the presence of gamma toxin, as proven by inhibition experiments using antisera raised against the respective recombinant proteins. Alpha toxin, SEC, and TSST1 production was quantified by enzyme-linked immunosorbent assays on supernatants of all hla, sec, and tst positive isolates. Blood isolates and colonising strains showed comparable amounts of secreted proteins within a wide range. Agr types I to IV were identified, but did not allow a prediction of high or low production rates. In contrast, alpha toxin production rates between distinct clonal complexes clearly differed. Spa typing was performed and revealed thirty-two unique spa gene patterns and eight small clusters comprising nineteen isolates. Recognised spa-typing clusters displayed highly similar production rates.ConclusionProduction rates of the three most prevalent exotoxins varied within both groups of blood isolates and colonising strains. By comparing genotypes and secretion, we found that identical complex gene patterns did not allow predictions of toxin production and function. However, identification of spa typing clusters was suitable to predict similar quantities of released exotoxins.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0630-x) contains supplementary material, which is available to authorized users.
Staphylococcal superantigens (sAgs), such as toxic shock syndrome toxin 1 (TSST-1), induce massive cytokine production, which may result in toxic shock syndrome (TSS) and sepsis. Recently, we reported that in vitro studies in human peripheral blood mononuclear cells (PBMC) do not reflect the immunological situation of the host, because after exposure to superantigens (sAgs) in vivo, mononuclear cells (MNC) leave the circulation and migrate to organs, e.g., the spleen, liver and lung. Our experimental model of choice is the rabbit because it is comparable to humans in its sensitivity to sAg. T cell activation has been assessed by lymphocyte proliferation and IL-2 gene expression after in vivo challenge with TSST-1 and the mutant antigens; expression of the genes of proinflammatory cytokines were taken as indicators for the inflammatory reaction after the combined treatment with TSST-1 and LPS. The question as to whether the biological activities of TSST-1, e.g., lymphocyte extravasation, toxicity and increased sensitivity to LPS, are mediated by T cell activation or activation by MHC II-only, are unresolved and results are contradictory. We have addressed this question by studying these reactions in vivo, with two TSST-1 mutants: one mutated at the MHC binding site (G31R) with reduced MHC binding with residual activity still present, and the other at the T cell binding site (H135A) with no residual function detectable. Here, we report that the mutant G31R induced all the biological effects of the wild type sAg, while the mutant with non-functional TCR binding did not retain any of the toxic effects, proving the pivotal role of T cells in this system.
Toxic shock syndrome (TSS) results from the host’s overwhelming inflammatory response and cytokine storm mainly due to superantigens (SAgs). There is no effective specific therapy. Application of immunoglobulins has been shown to improve the outcome of the disease and to neutralize SAgs both in vivo and in vitro. However, in most experiments that have been performed, antiserum was either pre-incubated with SAg, or both were applied simultaneously. To mirror more closely the clinical situation, we applied a multiple dose (over five days) lethal challenge in a rabbit model. Treatment with toxic shock syndrome toxin 1 (TSST-1) neutralizing antibody was fully protective, even when administered late in the course of the challenge. Kinetic studies on the effect of superantigen toxins are scarce. We performed in vitro kinetic studies by neutralizing the toxin with antibodies at well-defined time points. T-cell activation was determined by assessing T-cell proliferation (3H-thymidine incorporation), determination of IL-2 release in the cell supernatant (ELISA), and IL-2 gene activation (real-time PCR (RT-PCR)). Here we show that T-cell activation occurs continuously. The application of TSST-1 neutralizing antiserum reduced IL-2 and TNFα release into the cell supernatant, even if added at later time points. Interference with the prolonged stimulation of proinflammatory cytokines is likely to be in vivo relevant, as postexposure treatment protected rabbits against the multiple dose lethal SAg challenge. Our results shed new light on the treatment of TSS by specific antibodies even at late stages of exposure.
Among the toxin family of bacterial superantigens, the six members of the enterotoxin gene cluster (egc) seem to have unusual characteristics. They are present in the majority of Staphylococcus aureus strains, but their role in disease remains uncertain. We assessed secretion levels, immunogenicity, and toxicity of native and recombinant egc proteins. After having developed enzyme-linked immunosorbent assays, we found different quantities of egc proteins secreted by bacterial isolates. Supernatants induced proliferation of human peripheral blood mononuclear cells. However, purified recombinant egc proteins were shown to have differing superantigenicity potentials. Immunization with identical amounts of all members of egc, and the prominent toxic agent SEB, resulted in neutralizing antisera. Two egc proteins, SEI and SElN, were found to play a predominant role within the cluster. Both displayed the highest potential to activate blood cells, and were essential to be neutralized in supernatants. The application of a supernatant of a strain bearing only egc was sufficient for a lethal outcome in a rabbit model. Again, neutralization of SEI and SElN led to the survival of all tested animals. Finally, nanogram amounts of purified rSEI and rSElN led to lethality in vivo, pointing out the importance of both as virulence determinants among egc superantigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.