Summary A growing focus in microbial ecology is understanding how beneficial microbiome function is created and maintained through various assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species in the soil and on amphibian hosts. We compared the microbial communities of Plethodon cinereus salamanders along a land‐use gradient in the New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that variation in skin microbial community composition would correlate with changes seen in the soil which functions as the regional species pool. We found that salamanders and soil share many microbial taxa but that these two communities exhibit differences in the relative abundances of the bacterial phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varies with changes in land‐use associated factors creating site‐specific compositions. By employing a quantitative, null‐based assembly model, we identified that dispersal limitation, variable selection, and drift guide assembly of microbes onto their skin, creating high dissimilarity between individuals with likely consequences in disease preventative function.
A growing focus in microbial ecology is understanding of how beneficial microbiome function is created and maintained through both stochastic and deterministic assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species pools in the soil and local communities of an amphibian host. To address this, we compared the microbiomes of over 200 Plethodon cinereus salamanders along a 65km land-use gradient in the greater New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that if soil functions as the main regional species pool to amphibian skin, variation in skin microbial community composition would correlate with changes seen in the soil. We found that salamanders share many microbial taxa with their soil environment but that these two microbiomes exhibit key differences, especially in the relative abundances of the bacteria phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varied with changes in land-use associated factors such as canopy cover, impervious surface, and concentrations of the soil elements Al, Ni, and Hg, creating site-specific compositions. In addition, high dissimilarity among individual amphibian microbiomes across and within sites suggest that both stochastic and deterministic mechanisms guide the assembly of microbes onto amphibian skin, with likely consequences in disease preventative function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.