We identified the cDNAs of three functional rat H3 receptor isoforms (H3A, H3B, and H3C) and one nonfunctional truncated H3 receptor (H3T). The H3A, H3B, and H3C receptor isoforms vary in the length of their third intracellular loop; the H3B and H3C receptor lack 32 and 48 amino acids, respectively. Transient expression of the H3A, H3B, and H3C receptors in COS-7 cells results in high affinity binding for the H3 antagonist [125I]iodophenpropit, which is displaced by selective H3 agonists and antagonists. The three isoforms differentially couple to the Gi protein-dependent inhibition of adenylate cyclase or stimulation of p44/p42 mitogen activated protein kinase (MAPK), a new signaling pathway for the H3 receptor. Whereas the H3A receptor was less effective in inhibiting forskolin-induced cAMP production compared with the H3B or H3C receptor, this isoform was more effective in the stimulation of p44/p42 MAPK. The H3 receptor isoforms also displayed differential CNS expression in key areas involved in regulation of sensory, endocrine, and cognitive functions. A differential H3 receptor isoform expression was seen in, for example, hippocampus, where a characteristic dorsoventral distribution was revealed. Differential H3 receptor expression was also characteristic for the cerebellum, indicating possible histaminergic regulation of motor functions. The identification of these new H3 receptor isoforms and their specific signaling properties adds a new level of complexity to our understanding of the role of histamine, and the H3 receptor in brain function. The heterogeneous distribution of the isoforms suggests that H3 receptor isoform-specific regulation is important in several brain functions.
The orexin/hypocretin (ORX) system is involved in physiological processes such as feeding, energy metabolism, and the control of sleep and wakefulness. The ORX system may drive the aminergic and cholinergic activities that control sleep and wakefulness states because of the ORX fiber projections to the aminergic and cholinergic cell clusters. The biological mechanisms and relevance of the interactions between these neurotransmitter systems are poorly understood. We studied these systems in zebrafish, a model organism in which it is possible to simultaneously study these systems and their interactions.We cloned a zebrafish prepro-ORX gene that encodes for the two functional neuropeptides orexin-A (ORX-A) and orexin-B (ORX-B). The prepro-ORX gene of the zebrafish consisted of one exon in contrast to mammals. The sequence of the ORX-A peptide of the zebrafish was less conserved than the ORX-B peptide compared with other vertebrates. By using in situ hybridization and immunohistochemistry, we found that the organization of the ORX system of zebrafish was similar to the ORX system in mammals, including a hypothalamic cell cluster and widespread fiber projections. The ORX system of the zebrafish showed a unique characteristic with an additional putatively ORX-containing cell group. The ORX system innervated several aminergic nuclei, raphe, locus ceruleus, the mesopontine-like area, dopaminergic clusters, and histaminergic neurons. A reciprocal relationship was found between the ORX system and several aminergic systems. Our results suggest that the architecture of these neurotransmitter systems is conserved in vertebrates and that these neurotransmitter systems in zebrafish may be involved in regulation of states of wakefulness and energy homeostasis by similar mechanisms as those in mammals.
Dopaminergic deficiency in the brain of zebrafish was produced by systemic administration of two catecholaminergic neurotoxins, 6‐hydroxydopamine (6‐OHDA) and 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP), and the neurochemical and behavioural changes were characterized. The levels of dopamine and noradrenaline decreased significantly after the injection of MPTP and 6‐OHDA. Corresponding to these changes, fish exhibited characteristic changes in locomotor behaviour, i.e. the total distance moved and velocity decreased after both neurotoxins. Tyrosine hydroxylase and caspase 3 protein levels were not altered after MPTP or 6‐OHDA injections, as studied by immunohistochemistry and western blotting. The catecholaminergic cell clusters suggested to correspond to the mammalian nigrostriatal cell group displayed normal tyrosine hydroxylase immunoreactivity after the toxin treatment and did not show signs of DNA fragmentation that would indicate activation of cascades that lead to cell death. The results show that single systemic injections of MPTP and 6‐OHDA induce both biochemical and behavioural changes in zebrafish, albeit failing to produce any significant morphological alteration in catecholaminergic cell clusters at the tested doses. This approach may be used for the screening of chemicals affecting the dopaminergic system. The model may be especially useful for evaluation of the role of novel genes in neurotoxicity, as a large number of zebrafish mutants are becoming available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.