The superficial fascia has received much attention in recent years due to its important role of compartmentalizing the subcutaneous tissue. Ultrasound (US) imaging, owing to its high definition, provides the possibility of better visualizing and measuring its thickness. The aim of this study was to measure and compare, with US imaging, the thickness of superficial fascia in the arm and forearm in different regions/levels. An observational study has been performed using US imaging to measure superficial fascia thickness in the anterior and posterior regions at different levels in a sample of 30 healthy volunteers. The results for superficial fascia thickness revealed statistically significant differences (p < 0.0001) in the arm between the anterior and posterior regions; in terms of forearm, some statistically significant differences were found between regions/levels. However, in the posterior region/levels of the arm, the superficial fascia was thicker (0.53 ± 0.10 mm) than in the forearm (0.41 ± 0.10 mm); regarding the anterior regions/levels, the superficial fascia of the arm (0.40 ± 0.10 mm) was not statistically different than the forearm (0.40 ± 0.12 mm). In addition, the intra-rater reliability was good (ICC2,k: 0.88). US helps to visualize and assess the superficial fascia inside the subcutaneous tissue, improving the diagnosis of fascial dysfunction, and one of the Us parameters to reliably assess is the thickness in different regions and levels.
Ultrasound (US) imaging is increasingly the most used tool to measure the thickness of superficial and deep fasciae, but there are still some doubts about its reliability in this type of measurement. The current study sets out to assess the inter-rater and intra-rater reliability of US measurements of superficial and deep fasciae thicknesses in the arm and forearm. The study involved two raters: the first (R1) is an expert in skeletal–muscle US imaging and, in particular, the US assessment of fasciae; the second (R2) is a radiologist resident with 1 year’s experience in skeletal–muscle US imaging. R2, not having specific competence in the US imaging of fasciae, was trained by R1. R1 took US images following the protocol by Pirri et al. 2021, and the US-recorded images were analyzed separately by the two raters in different sessions. Each rater measured both types of fasciae at different regions and levels of the arm and forearm. Intra- and inter-rater reliability was excellent for the deep fascia and good and excellent for the superficial fascia according to the different regions/levels (for example for the anterior region of the arm: deep fascia: Ant 1: ICC2,2 = 0.95; 95% CI = 0.81–0.98; superficial fascia: Ant 1: ICC2,2 = 0.85, 95% CI = 0.79–0.88). These findings confirm that US imaging is a reliable and cost-effective tool for evaluating both fasciae, superficial and deep.
Wound healing is an intricate, dynamic process, in which various elements such as hyperglycemia, neuropathy, blood supply, matrix turnover, wound contraction, and the microbiome all have a role in this “out of tune” diabetic complex symphony, particularly noticeable in the complications of diabetic foot. Recently it was demonstrated that the fasciae have a crucial role in proprioception, muscular force transmission, skin vascularization and tropism, and wound healing. Indeed, the fasciae are a dynamic multifaceted meshwork of connective tissue comprised of diverse cells settled down in the extracellular matrix and nervous fibers; each constituent plays a particular role in the fasciae adapting in various ways to the diverse stimuli. This review intends to deepen the discussion on the possible fascial role in diabetic wounds. In diabetes, the thickening of collagen, the fragmentation of elastic fibers, and the changes in glycosaminoglycans, in particular hyaluronan, leads to changes in the stiffness, gliding, and the distribution of force transmission in the fasciae, with cascading repercussions at the cellular and molecular levels, consequently feeding a vicious pathophysiological circle. A clear scientific perception of fascial role from microscopic and macroscopic points of view can facilitate the identification of appropriate treatment strategies for wounds in diabetes and create new perspectives of treatment.
Hyaluronan (HA) has complex biological roles that have catalyzed clinical interest in several fields of medicine. In this narrative review, we provide an overview of HA aggregation, also called densification, in human organs. The literature suggests that HA aggregation can occur in the liver, eye, lung, kidney, blood vessel, muscle, fascia, skin, pancreatic cancer and malignant melanoma. In all these organs, aggregation of HA leads to an increase in extracellular matrix viscosity, causing stiffness and organ dysfunction. Fibrosis, in some of these organs, may also occur as a direct consequence of densification in the long term. Specific imaging evaluation, such dynamic ultrasonography, elasto-sonography, elasto-MRI and T1ρ MRI can permit early diagnosis to enable the clinician to organize the treatment plan and avoid further progression of the pathology and dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.