Donation after circulatory death (DCD) could improve donor heart availability; however, warm ischemia-reperfusion injury raises concerns about graft quality. Mechanical postconditioning (MPC) may limit injury, but mechanisms remain incompletely characterized. Therefore, we investigated the roles of glucose metabolism and key signaling molecules in MPC using an isolated rat heart model of DCD. Hearts underwent 20 min perfusion, 30 min global ischemia, and 60 minu reperfusion with or without MPC (two cycles: 30 s reperfusion—30 s ischemia). Despite identical perfusion conditions, MPC either significantly decreased (low recovery = LoR; 32 ± 5%; p < 0.05), or increased (high recovery = HiR; 59 ± 7%; p < 0.05) the recovery of left ventricular work compared with no MPC (47 ± 9%). Glucose uptake and glycolysis were increased in HiR vs. LoR hearts (p < 0.05), but glucose oxidation was unchanged. Furthermore, in HiR vs. LoR hearts, phosphorylation of raptor, a downstream target of AMPK, increased (p < 0.05), cytochrome c release (p < 0.05) decreased, and TNFα content tended to decrease. Increased glucose uptake and glycolysis, lower mitochondrial damage, and a trend towards decreased pro-inflammatory cytokines occurred specifically in HiR vs. LoR MPC hearts, which may result from greater AMPK activation. Thus, we identify endogenous cellular mechanisms that occur specifically with cardioprotective MPC, which could be elicited in the development of effective reperfusion strategies for DCD cardiac grafts.
Heart transplantation with donation after circulatory death (DCD) has become a real option to increase graft availability. However, given that DCD organs are exposed to the potentially damaging conditions of warm ischemia before procurement, new strategies for graft evaluation are of particular value for the safe expansion of DCD heart transplantation. Mitochondria-related parameters are very attractive as biomarkers because of their intimate association with cardiac ischemia-reperfusion injury. In this context, a group of mitochondrial components, called mitochondrial damage-associated molecular patterns (mtDAMPs), released by stressed cells, holds great promise. mtDAMPs may be released at different stages of DCD cardiac donation and may act as indicators of graft quality. Because of the lack of information available for DCD grafts, we consider that relevant information can be obtained from other acute cardiac ischemic conditions. Thus, we conducted a systematic review of original research articles in which mtDAMP levels were assessed in the circulation of patients with acute myocardial infarction and cardiac arrest. We conclude that 4 mtDAMPs, ATP, cytochrome c, mitochondrial DNA, and succinate, are rapidly released into the circulation after the onset of ischemia, and their concentrations increase with reperfusion. Importantly, circulating levels of mtDAMPs correlate with cardiac damage and may be used as prognostic markers for patient survival in these conditions. Taken together, these findings support the concept that mtDAMPs may be of use as biomarkers to assess the transplant suitability of procured DCD hearts, and ultimately aid in facilitating the safe, widespread adoption of DCD heart transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.