Laboratory-based X-ray absorption spectroscopy (XAS) and especially X-ray absorption near-edge structure (XANES) offers new opportunities in catalyst characterization and presents not only an alternative, but also a complementary approach to precious beamtime at synchrotron facilities. We successfully designed a laboratory-based setup for performing operando, quasisimultaneous XANES analysis at multiple K-edges, more specifically, operando XANES of mono-, bi-, and trimetallic CO 2 hydrogenation catalysts containing Ni, Fe, and Cu. Detailed operando XANES studies of the multielement solid catalysts revealed metal-dependent differences in the reducibility and re-oxidation behavior and their influence on the catalytic performance in CO 2 hydrogenation. The applicability of operando laboratory-based XANES at multiple K-edges paves the way for advanced multielement catalyst characterization complementing detailed studies at synchrotron facilities.
Laboratory-based X-ray absorption spectroscopy (XAS) and especially X-ray absorption near-edge structure (XANES) offers new opportunities in catalyst characterization and presents not only an alternative, but also a complementary approach to precious beamtime at synchrotron facilities. We successfully designed a laboratory-based setup for performing operando, quasisimultaneous XANES analysis at multiple K-edges, more specifically, operando XANES of mono-, bi-, and trimetallic CO 2 hydrogenation catalysts containing Ni, Fe, and Cu. Detailed operando XANES studies of the multielement solid catalysts revealed metal-dependent differences in the reducibility and re-oxidation behavior and their influence on the catalytic performance in CO 2 hydrogenation. The applicability of operando laboratory-based XANES at multiple K-edges paves the way for advanced multielement catalyst characterization complementing detailed studies at synchrotron facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.