Aim: To explore the physiological consequences of the ryanodine receptor (RyR2)-P2328S mutation associated with catecholaminergic polymorphic ventricular tachycardia (CPVT s/s hearts showed higher incidences of nsVTs before but mainly sVTs after introduction of isoproterenol with both regular stimuli and PES, particularly at higher pacing frequencies. Additionally, intrinsically beating RyR2 s/s showed extrasystolic events often followed by spontaneous sVT. Conclusion:The RyR2-P2328S mutation results in marked alterations in cellular Ca 2+ homeostasis and arrhythmogenic properties resembling CPVT with greater effects in the homozygote than the heterozygote demonstrating an important gene dosage effect.
The experiments explored the extent to which alterations in L-type Ca2+ channel-mediated Ca2+ entry triggers Ca2+-mediated arrhythmogenesis in Langendorff-perfused murine hearts through use of the specific L-type Ca2+ channel modulator FPL-64716 (FPL). Introduction of FPL (1 μm) resulted in a gradual development (>10 min) of diastolic electrical events and alternans in spontaneously beating hearts from which monophasic action potentials were recorded. In regularly paced hearts, they additionally led to non-sustained and sustained ventricular tachycardia (nsVT and sVT). Programmed electrical stimulation (PES) resulted in nsVT and sVT after 5–10 and >10 min perfusion, respectively. Pretreatments with nifedipine, diltiazem and cyclopiazonic acid abolished arrhythmogenic tendency induced by subsequent introduction of FPL, consistent with its dependence upon both extracellular Ca2+ entry and the degree of filling of the sarcoplasmic reticular Ca2+ store. Values for action potential duration at 90% repolarization when any of these agents were applied to FPL-treated hearts became indistinguishable from those shown by untreated control hearts, in contrast to earlier reports of their altering in long QT syndrome type 3 and hypokalaemic murine models for re-entrant arrhythmogenesis. These arrhythmic effects instead correlated with alterations in Ca2+ homeostasis at the single-cell level found in investigations of the effects of both FPL and the same agents in regularly stimulated fluo−3 loaded myocytes. These findings are compatible with a prolonged extracellular Ca2+ entry that potentially results in an intracellular Ca2+ overload and produces the cardiac arrhythmogenecity following addition of FPL.
We investigated the effects of reducing sarcoplasmic reticular (SR) Ca(2+) stores using the Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA) in Langendorff-perfused mouse hearts exposed to different pro-arrhythmic agents all known to produce Ca(2+)-mediated arrhythmogenesis. CPA (100 and 150 nM) produced progressive (beginning over approximately 1 min) and significant (P<0.0001) reductions in peak amplitudes of Ca(2+) transients evoked by regular stimulation in isolated Fluo-3 loaded myocytes from F/F(0)=3.2+/-0.16 (n=12 cells) to 1.62+/-0.012 (n=6 cells) and 1.53+/-0.06 (n=12 cells), respectively, consistent with previous reports describing reductions of store Ca(2+) in other cell systems. The corresponding effects of CPA were then examined in intact hearts exposed to isoproterenol (100 nM), elevated extracellular [Ca(2+)] (5mM) and caffeine (1mM). All three agents produced ventricular tachycardia either when added alone or simultaneously with CPA during programmed electrical stimulation. However, arrhythmogenicity was not observed when such agents were added approximately 10 min after introduction of CPA. CPA thus antagonized this Ca(2+)-mediated arrhythmogenesis but only under circumstances of SR Ca(2+) depletion. These alterations in arrhythmogenic tendency took place despite an absence of alterations in electrogram and monophasic action potential characteristics. This was in sharp contrast to previous observations in murine, DeltaKPQ-Scn5a (LQT3) and KCNE1(-/-) (LQT5), systems where re-entry has been implicated in arrhythmogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.