The discovery of the human immunodeficiency virus type 1 (HIV-1) in 1982 soon led to the identification and development of antiviral compounds to be used in treatment strategies for infected patients. Early in the epidemic, drug monotherapies frequently led to treatment failures because the virus quickly developed resistance to the single drug. Following the advent of highly active antiretroviral therapy (HAART) in 1995, dramatic improvements in HIV-1-infected patient health and survival were realized as more refined combination therapies resulted in reductions in viral loads and increases in CD4 ؉ T-cell counts. In the absence of an effective vaccine, prevention of HIV-1 infection has also gained traction as an approach to curbing the pandemic. The development of compounds as safe and effective microbicides has intensified and has focused on blocking the transmission of HIV-1 during all forms of sexual intercourse. Initial preclinical investigations and clinical trials of microbicides focused on single compounds effective against HIV-1. However, the remarkable successes achieved using combination therapy to treat systemic HIV-1 infection have subsequently stimulated the study and development of combination microbicides that will simultaneously inhibit multiple aspects of the HIV-1 transmission process by targeting incoming viral particles, virus-infected cells, and cells susceptible to HIV-1 infection. This review focuses on existing and developing combination therapies, covering preclinical development, in vitro and in vivo efficacy studies, and subsequent clinical trials. The shift in focus within the microbicide development field from single compounds to combination approaches is also explored.
The present studies were conducted to better define the mechanism of action of polyethylene hexamethylene biguanide (PEHMB) (designated herein as NB325), which was shown in previous studies to inhibit infection by the human immunodeficiency virus type 1 (HIV-1). Fluorescence-activated flow cytometric analyses of activated human CD4؉ T lymphocytes exposed to NB325 demonstrated concentration-dependent reductions in CXCR4 epitope recognition in the absence of altered recognition of selected CD4 or CD3 epitopes. NB325 also inhibited chemotaxis of CD4 ؉ T lymphocytes induced by the CXCR4 ligand CXCL12. However, NB325 did not cause CXCR4 internalization (unlike CXCL12) and did not interfere with CXCL12 binding. Additional flow cytometric analyses using antibodies with distinct specificities for extracellular domains of CXCR4 demonstrated that NB325 specifically interfered with antibody binding to extracellular loop 2 (ECL2). This interaction was confirmed using competitive binding analyses, in which a peptide derived from CXCR4 ECL2 competitively inhibited NB325-mediated reductions in CXCR4 epitope recognition. Collectively, these results demonstrate that the biguanide-based compound NB325 inhibits HIV-1 infection by specifically interacting with the HIV-1 coreceptor CXCR4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.